Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/45860
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEWNETU, Worku Biyadgie-
dc.contributor.authorGijbels, Irène-
dc.contributor.authorVERHASSELT, Anneleen-
dc.date.accessioned2025-04-15T11:39:26Z-
dc.date.available2025-04-15T11:39:26Z-
dc.date.issued2025-
dc.date.submitted2025-03-21T13:08:06Z-
dc.identifier.citationThe international journal of biostatistics,-
dc.identifier.issn2194-573X-
dc.identifier.urihttp://hdl.handle.net/1942/45860-
dc.description.abstractCox proportional hazards model is widely used to study the relationship between the survival time of an event and covariates. Its primary objective is parameter estimation assuming a constant relative hazard throughout the entire follow-up time. The baseline hazard is thus treated as a nuisance parameter. However, if the interest is to predict possible outcomes like specific quantiles of the distribution (e.g. median survival time), survival and hazard functions, it may be more convenient to use a parametric baseline distribution. Such a parametric model should however be flexible enough to allow for various shapes of e.g. the hazard function. In this paper we propose flexible hazard-based models for right censored data using a large class of two-piece asymmetric baseline distributions. The effect of covariates is characterized through timescale changes on hazard progression and on the relative hazard ratio; and can take three possible functional forms: parametric, semi-parametric (partly linear) and non-parametric. In the first case, the usual full likelihood estimation method is applied. In the semi-parametric and non-parametric settings a general profile (local) likelihood estimation approach is proposed. An extensive simulation study investigates the finite-sample performances of the proposed method. Its use in data analysis is illustrated in real data examples.-
dc.description.sponsorshipThe authors thank the reviewers for their valuable comments that led to an improvement of the manuscript. The second author gratefully acknowledges support from Research Grant C16/20/002 project of the Research Fund KU Leuven.-
dc.language.isoen-
dc.subject.otherFlexible hazard model-
dc.subject.otherrandom right censoring-
dc.subject.otherproportional hazard-
dc.subject.otherlikelihood-
dc.subject.otherlocal likelihood-
dc.titleA hybrid hazard-based model using two-piece distributions-
dc.typeJournal Contribution-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.statusEarly view-
local.type.programmeVSC-
dc.identifier.doi10.1515/ijb-2023-0153-
dc.identifier.isiWOS:001478064600001-
dc.identifier.eissn1557-4679-
local.provider.typePdf-
local.uhasselt.internationalno-
item.fullcitationEWNETU, Worku Biyadgie; Gijbels, Irène & VERHASSELT, Anneleen (2025) A hybrid hazard-based model using two-piece distributions. In: The international journal of biostatistics,.-
item.contributorEWNETU, Worku Biyadgie-
item.contributorGijbels, Irène-
item.contributorVERHASSELT, Anneleen-
item.fulltextWith Fulltext-
item.accessRightsRestricted Access-
crisitem.journal.issn2194-573X-
crisitem.journal.eissn1557-4679-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
PaperEGVRevsionR1B.pdf
  Restricted Access
In press5.46 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.