Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/45874
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tostes, Paulo | - |
dc.contributor.author | Balinisteanu, Anca E. | - |
dc.contributor.author | MOURA FERREIRA, Sara | - |
dc.contributor.author | Williams, Helena | - |
dc.contributor.author | Voigt, Jens-Uwe | - |
dc.contributor.author | D'hooge, Jan | - |
dc.date.accessioned | 2025-04-17T11:13:11Z | - |
dc.date.available | 2025-04-17T11:13:11Z | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2025-04-11T12:51:57Z | - |
dc.identifier.citation | 2024 IEEE Ultrasonic, ferroelectrics, and frequency control joint symposium, UFFC-JS 2024, IEEE, (Art N° 8318) | - |
dc.identifier.isbn | 979-8-3503-7191-8; 979-8-3503-7190-1 | - |
dc.identifier.issn | 1099-4734 | - |
dc.identifier.uri | http://hdl.handle.net/1942/45874 | - |
dc.description.abstract | Ultrasound is the most practical, cost-effective and patient-friendly clinical imaging modality. However, Computed Tomography and Magnetic Resonance Imaging outperform echography when texture or tissue characterization is clinically required. As AI-methodologies could help resolve this, a Deep Learning algorithm was applied to classify localized infarcted tissue from static ultrasound recordings. | - |
dc.description.sponsorship | This work was in the context of the International Training Network project called MArie Curie Intelligent UltraSound (MARCIUS). The MARCIUS project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 860745. | - |
dc.language.iso | en | - |
dc.publisher | IEEE | - |
dc.relation.ispartofseries | IEEE International Symposium on Applications of Ferroelectrics | - |
dc.rights | IEEE | - |
dc.subject.other | Convolutional Neural Networks | - |
dc.subject.other | Deep Learning | - |
dc.subject.other | Infarct Classification | - |
dc.subject.other | Radio Frequency | - |
dc.subject.other | Ultrasound Texture | - |
dc.title | Comparison of Radio Frequency vs beamformed ultrasound data for infarct classification with CNNs | - |
dc.type | Proceedings Paper | - |
local.bibliographicCitation.conferencedate | 2024, September 22-26 | - |
local.bibliographicCitation.conferencename | 2024 IEEE Ultrasonics, Ferroelectrics, and Frequency Control Joint | - |
local.bibliographicCitation.conferencename | Symposium | - |
local.bibliographicCitation.conferenceplace | Taipei, TAIWAN | - |
local.format.pages | 4 | - |
local.bibliographicCitation.jcat | C1 | - |
dc.description.notes | Tostes, P (corresponding author), Katholieke Univ Leuven, Dept Cardiovasc Sci, Leuven, Belgium. | - |
dc.description.notes | paulo.tostes@kuleuven.be; anca.balinisteanu@ymail.com; | - |
dc.description.notes | sara.mouraferreira@gmail.com; helena.williams@kuleuven.be; | - |
dc.description.notes | jens-uwe.voigt@uzleuven.be; jan.dhooge@kuleuven.be | - |
local.publisher.place | 345 E 47TH ST, NEW YORK, NY 10017 USA | - |
local.type.refereed | Refereed | - |
local.type.specified | Proceedings Paper | - |
local.bibliographicCitation.artnr | 8318 | - |
local.type.programme | H2020 | - |
local.relation.h2020 | 860745 | - |
dc.identifier.doi | 10.1109/UFFC-JS60046.2024.10794162 | - |
dc.identifier.isi | 001428150100622 | - |
local.provider.type | wosris | - |
local.bibliographicCitation.btitle | 2024 IEEE Ultrasonic, ferroelectrics, and frequency control joint symposium, UFFC-JS 2024 | - |
local.description.affiliation | [Tostes, Paulo; Balinisteanu, Anca E.; Voigt, Jens-Uwe; D'hooge, Jan] Katholieke Univ Leuven, Dept Cardiovasc Sci, Leuven, Belgium. | - |
local.description.affiliation | [Balinisteanu, Anca E.] Univ Med & Pharm, Biomed Res Inst, Bucharest, Romania. | - |
local.description.affiliation | [Ferreira, Sara Moura] Hasselt Univ, Fac Med & Life Sci, Hasselt, Belgium. | - |
local.description.affiliation | [Williams, Helena] Katholieke Univ Leuven, Dept Dev & Regenerat, Leuven, Belgium. | - |
local.uhasselt.international | yes | - |
item.contributor | Tostes, Paulo | - |
item.contributor | Balinisteanu, Anca E. | - |
item.contributor | MOURA FERREIRA, Sara | - |
item.contributor | Williams, Helena | - |
item.contributor | Voigt, Jens-Uwe | - |
item.contributor | D'hooge, Jan | - |
item.accessRights | Restricted Access | - |
item.fullcitation | Tostes, Paulo; Balinisteanu, Anca E.; MOURA FERREIRA, Sara; Williams, Helena; Voigt, Jens-Uwe & D'hooge, Jan (2024) Comparison of Radio Frequency vs beamformed ultrasound data for infarct classification with CNNs. In: 2024 IEEE Ultrasonic, ferroelectrics, and frequency control joint symposium, UFFC-JS 2024, IEEE, (Art N° 8318). | - |
item.fulltext | With Fulltext | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Comparison of Radio Frequency vs beamformed ultrasound data for infarct classification with CNNs.pdf Restricted Access | Published version | 286.17 kB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.