Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/45913
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBollen , Heleen-
dc.contributor.authorDok, Ruveyda-
dc.contributor.authorDe Keyzer, Frederik-
dc.contributor.authorDeschuymer, Sarah-
dc.contributor.authorLAENEN, Annouschka-
dc.contributor.authorDevos, Johannes-
dc.contributor.authorVandecaveye, Vincent-
dc.contributor.authorNuyts , Sandra-
dc.date.accessioned2025-05-08T10:51:51Z-
dc.date.available2025-05-08T10:51:51Z-
dc.date.issued2025-
dc.date.submitted2025-04-24T10:34:02Z-
dc.identifier.citationPhysics & Imaging in Radiation Oncology, 34 (Art N° 100759)-
dc.identifier.urihttp://hdl.handle.net/1942/45913-
dc.description.abstractBackground and purpose: Locoregional recurrence (LRR) is the primary pattern of failure in head and neck cancer (HNC) following radiation treatment (RT). Predicting an individual patient's LRR risk is crucial for pre-treatment risk stratification and treatment adaptation during RT. This study aimed to evaluate the feasibility of integrating pre-treatment and mid-treatment diffusion-weighted (DW)-MRI radiomic parameters into multivariable prognostic models for HNC. Materials and methods: A total of 178 oropharyngeal cancer (OPC) patients undergoing (chemo)radiotherapy (CRT) were analyzed on DW-MRI scans. 105 radiomic features were extracted from ADC maps. Cox regression models incorporating clinical and radiomic parameters were developed for pre-treatment and mid-treatment phases. The models' discriminative ability was assessed with the Harrel C-index after 5-fold cross-validation. Results: Gray Level Co-occurrence Matrix (GLCM)-correlation emerged as a significant pre-treatment radiomic predictor of locoregional control (LRC) with a C-index (95 % CI) of 0.66 (0.57-0.75). Significant clinical predictors included HPV status, stage, and alcohol use, yielding a C-index of 0.70 (0.62-0.78). Combining clinical and radiomic data resulted in a C-index of 0.72 (0.65-0.80), with GLCM-correlation, disease stage and alcohol use as significant predictors. The mid-treatment model, which included delta (Delta) mean ADC, stage, and additional chemotherapy, achieved a C-index of 0.74 (0.65-0.82). Internal cross-validation yielded C-indices of 0.60 (0.51-0.69), 0.56 (0.44-0.66), and 0.63 (0.54-0.73) for the clinical, combined, and mid-treatment models, respectively. Conclusion: The addition of Delta ADC improves the clinical model, highlighting the potential complementary value of radiomic features in prognostic modeling.-
dc.description.sponsorshipH.B. is supported by a strategic basic research PhD fellowship from the Flemish Foundation of Scientific Research (FWO-Vlaanderen) under grant number 1SE9822N. S.N. is supported by clinical research mandate from the Flemish Foundation of Scientific Research (FWO-Vlaanderen) under grant number 18B4122N. The project is supported by Kom op tegen Kanker with reference 13142.-
dc.language.isoen-
dc.publisherELSEVIER-
dc.rights2025 The Author(s). Published by Elsevier B.V. on behalf of European Society of Radiotherapy & Oncology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).-
dc.subject.otherOropharyngeal carcinoma-
dc.subject.otherPredictive outcome-
dc.subject.otherModelling-
dc.subject.otherRadiomics-
dc.subject.otherdiffusion-weighted MRI-
dc.subject.otherFunctional imaging-
dc.titleImproving outcome prediction in oropharyngeal carcinoma through the integration of diffusion-weighted magnetic resonance imaging radiomics-
dc.typeJournal Contribution-
dc.identifier.volume34-
local.format.pages7-
local.bibliographicCitation.jcatA1-
dc.description.notesNuyts, S (corresponding author), Katholieke Univ Leuven, Dept Oncol, Lab Expt Radiotherapy, B-3000 Leuven, Belgium.; Nuyts, S (corresponding author), UZ Leuven, Radiat Oncol, B-3000 Leuven, Belgium.-
dc.description.notessandra.nuyts@uzleuven.be-
local.publisher.placeRADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr100759-
dc.identifier.doi10.1016/j.phro.2025.100759-
dc.identifier.pmid40242809-
dc.identifier.isi001463973700001-
local.provider.typewosris-
local.description.affiliation[Bollen, Heleen; Dok, Ruveyda; Deschuymer, Sarah; Nuyts, Sandra] Univ Leuven, Dept Oncol, Lab Expt Radiotherapy, B-3000 Leuven, Belgium.-
local.description.affiliation[Bollen, Heleen; Deschuymer, Sarah; Nuyts, Sandra] Univ Hosp Leuven, Leuven Canc Inst, Dept Radiat Oncol, B-3000 Leuven, Belgium.-
local.description.affiliation[De Keyzer, Frederik; Devos, Johannes; Vandecaveye, Vincent] Univ Hosp Leuven, Dept Radiol, B-3000 Leuven, Belgium.-
local.description.affiliation[Laenen, Annouschka] Univ Leuven, Leuven Biostat & Stat Bioinformat Ctr, B-3000 Leuven, Belgium.-
local.description.affiliation[Deschuymer, Sarah] Ghent Univ Hosp, Dept Radiat Oncol, B-9000 Ghent, Belgium.-
local.description.affiliation[Bollen, Heleen] Jessa Hosp, Dept Radiat Oncol, Limburgs Oncol Ctr LOC, B-3500 Hasselt, Belgium.-
local.description.affiliation[Bollen, Heleen] Ziekenhuis Oost Limburg ZOL, B-3600 Genk, Belgium.-
local.uhasselt.internationalno-
item.contributorBollen , Heleen-
item.contributorDok, Ruveyda-
item.contributorDe Keyzer, Frederik-
item.contributorDeschuymer, Sarah-
item.contributorLAENEN, Annouschka-
item.contributorDevos, Johannes-
item.contributorVandecaveye, Vincent-
item.contributorNuyts , Sandra-
item.fullcitationBollen , Heleen; Dok, Ruveyda; De Keyzer, Frederik; Deschuymer, Sarah; LAENEN, Annouschka; Devos, Johannes; Vandecaveye, Vincent & Nuyts , Sandra (2025) Improving outcome prediction in oropharyngeal carcinoma through the integration of diffusion-weighted magnetic resonance imaging radiomics. In: Physics & Imaging in Radiation Oncology, 34 (Art N° 100759).-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
crisitem.journal.eissn2405-6316-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Improving outcome prediction in oropharyngeal carcinoma through .pdfPublished version1.33 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.