Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/45913
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Bollen , Heleen | - |
dc.contributor.author | Dok, Ruveyda | - |
dc.contributor.author | De Keyzer, Frederik | - |
dc.contributor.author | Deschuymer, Sarah | - |
dc.contributor.author | LAENEN, Annouschka | - |
dc.contributor.author | Devos, Johannes | - |
dc.contributor.author | Vandecaveye, Vincent | - |
dc.contributor.author | Nuyts , Sandra | - |
dc.date.accessioned | 2025-05-08T10:51:51Z | - |
dc.date.available | 2025-05-08T10:51:51Z | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-04-24T10:34:02Z | - |
dc.identifier.citation | Physics & Imaging in Radiation Oncology, 34 (Art N° 100759) | - |
dc.identifier.uri | http://hdl.handle.net/1942/45913 | - |
dc.description.abstract | Background and purpose: Locoregional recurrence (LRR) is the primary pattern of failure in head and neck cancer (HNC) following radiation treatment (RT). Predicting an individual patient's LRR risk is crucial for pre-treatment risk stratification and treatment adaptation during RT. This study aimed to evaluate the feasibility of integrating pre-treatment and mid-treatment diffusion-weighted (DW)-MRI radiomic parameters into multivariable prognostic models for HNC. Materials and methods: A total of 178 oropharyngeal cancer (OPC) patients undergoing (chemo)radiotherapy (CRT) were analyzed on DW-MRI scans. 105 radiomic features were extracted from ADC maps. Cox regression models incorporating clinical and radiomic parameters were developed for pre-treatment and mid-treatment phases. The models' discriminative ability was assessed with the Harrel C-index after 5-fold cross-validation. Results: Gray Level Co-occurrence Matrix (GLCM)-correlation emerged as a significant pre-treatment radiomic predictor of locoregional control (LRC) with a C-index (95 % CI) of 0.66 (0.57-0.75). Significant clinical predictors included HPV status, stage, and alcohol use, yielding a C-index of 0.70 (0.62-0.78). Combining clinical and radiomic data resulted in a C-index of 0.72 (0.65-0.80), with GLCM-correlation, disease stage and alcohol use as significant predictors. The mid-treatment model, which included delta (Delta) mean ADC, stage, and additional chemotherapy, achieved a C-index of 0.74 (0.65-0.82). Internal cross-validation yielded C-indices of 0.60 (0.51-0.69), 0.56 (0.44-0.66), and 0.63 (0.54-0.73) for the clinical, combined, and mid-treatment models, respectively. Conclusion: The addition of Delta ADC improves the clinical model, highlighting the potential complementary value of radiomic features in prognostic modeling. | - |
dc.description.sponsorship | H.B. is supported by a strategic basic research PhD fellowship from the Flemish Foundation of Scientific Research (FWO-Vlaanderen) under grant number 1SE9822N. S.N. is supported by clinical research mandate from the Flemish Foundation of Scientific Research (FWO-Vlaanderen) under grant number 18B4122N. The project is supported by Kom op tegen Kanker with reference 13142. | - |
dc.language.iso | en | - |
dc.publisher | ELSEVIER | - |
dc.rights | 2025 The Author(s). Published by Elsevier B.V. on behalf of European Society of Radiotherapy & Oncology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). | - |
dc.subject.other | Oropharyngeal carcinoma | - |
dc.subject.other | Predictive outcome | - |
dc.subject.other | Modelling | - |
dc.subject.other | Radiomics | - |
dc.subject.other | diffusion-weighted MRI | - |
dc.subject.other | Functional imaging | - |
dc.title | Improving outcome prediction in oropharyngeal carcinoma through the integration of diffusion-weighted magnetic resonance imaging radiomics | - |
dc.type | Journal Contribution | - |
dc.identifier.volume | 34 | - |
local.format.pages | 7 | - |
local.bibliographicCitation.jcat | A1 | - |
dc.description.notes | Nuyts, S (corresponding author), Katholieke Univ Leuven, Dept Oncol, Lab Expt Radiotherapy, B-3000 Leuven, Belgium.; Nuyts, S (corresponding author), UZ Leuven, Radiat Oncol, B-3000 Leuven, Belgium. | - |
dc.description.notes | sandra.nuyts@uzleuven.be | - |
local.publisher.place | RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
local.bibliographicCitation.artnr | 100759 | - |
dc.identifier.doi | 10.1016/j.phro.2025.100759 | - |
dc.identifier.pmid | 40242809 | - |
dc.identifier.isi | 001463973700001 | - |
local.provider.type | wosris | - |
local.description.affiliation | [Bollen, Heleen; Dok, Ruveyda; Deschuymer, Sarah; Nuyts, Sandra] Univ Leuven, Dept Oncol, Lab Expt Radiotherapy, B-3000 Leuven, Belgium. | - |
local.description.affiliation | [Bollen, Heleen; Deschuymer, Sarah; Nuyts, Sandra] Univ Hosp Leuven, Leuven Canc Inst, Dept Radiat Oncol, B-3000 Leuven, Belgium. | - |
local.description.affiliation | [De Keyzer, Frederik; Devos, Johannes; Vandecaveye, Vincent] Univ Hosp Leuven, Dept Radiol, B-3000 Leuven, Belgium. | - |
local.description.affiliation | [Laenen, Annouschka] Univ Leuven, Leuven Biostat & Stat Bioinformat Ctr, B-3000 Leuven, Belgium. | - |
local.description.affiliation | [Deschuymer, Sarah] Ghent Univ Hosp, Dept Radiat Oncol, B-9000 Ghent, Belgium. | - |
local.description.affiliation | [Bollen, Heleen] Jessa Hosp, Dept Radiat Oncol, Limburgs Oncol Ctr LOC, B-3500 Hasselt, Belgium. | - |
local.description.affiliation | [Bollen, Heleen] Ziekenhuis Oost Limburg ZOL, B-3600 Genk, Belgium. | - |
local.uhasselt.international | no | - |
item.contributor | Bollen , Heleen | - |
item.contributor | Dok, Ruveyda | - |
item.contributor | De Keyzer, Frederik | - |
item.contributor | Deschuymer, Sarah | - |
item.contributor | LAENEN, Annouschka | - |
item.contributor | Devos, Johannes | - |
item.contributor | Vandecaveye, Vincent | - |
item.contributor | Nuyts , Sandra | - |
item.fullcitation | Bollen , Heleen; Dok, Ruveyda; De Keyzer, Frederik; Deschuymer, Sarah; LAENEN, Annouschka; Devos, Johannes; Vandecaveye, Vincent & Nuyts , Sandra (2025) Improving outcome prediction in oropharyngeal carcinoma through the integration of diffusion-weighted magnetic resonance imaging radiomics. In: Physics & Imaging in Radiation Oncology, 34 (Art N° 100759). | - |
item.fulltext | With Fulltext | - |
item.accessRights | Open Access | - |
crisitem.journal.eissn | 2405-6316 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Improving outcome prediction in oropharyngeal carcinoma through .pdf | Published version | 1.33 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.