Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/45929
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDe Witte , Dries-
dc.contributor.authorMOLENBERGHS, Geert-
dc.contributor.authorALONSO ABAD, Ariel-
dc.contributor.authorNEYENS, Thomas-
dc.contributor.authorVERBEKE, Geert-
dc.date.accessioned2025-05-09T07:45:05Z-
dc.date.available2025-05-09T07:45:05Z-
dc.date.issued2025-
dc.date.submitted2025-04-24T10:26:59Z-
dc.identifier.citationStatistical modelling,-
dc.identifier.urihttp://hdl.handle.net/1942/45929-
dc.description.abstractIn empirical studies, multiple outcomes are often measured repeatedly over time, and interest frequently lies in studying the association between these longitudinal outcomes and a time-to-event outcome. Therefore, shared-parameter joint models for longitudinal and time-to-event outcomes have been developed. However, while such joint models in theory also allow for multiple longitudinal outcomes, they are often restricted to a limited number of outcomes due to computational complexity when fitting the models. To address this problem, we propose a new joint model, which is based on correlated instead of shared random effects, and for which a pairwise-modelling strategy can be used. In this approach, the longitudinal outcomes are modelled with (generalized) linear mixed models and the survival outcome with a Weibull proportional hazards frailty model. Instead of fitting the full joint model, this approach involves fitting all possible bivariate models, and inference is based on pseudo-likelihood theory. The main advantage of our approach is that there is no restriction on the number of longitudinally measured outcomes that are jointly modelled with the time-to-event outcome.-
dc.description.sponsorshipThe authors received no financial support for the research, authorship and/or publication of this article.-
dc.language.isoen-
dc.publisherSAGE PUBLICATIONS LTD-
dc.rights2025 The Author(s)-
dc.subject.otherhigh-dimensional data-
dc.subject.otherhigh-dimensional data-
dc.subject.otherlinear mixed models-
dc.subject.otherlinear mixed models-
dc.subject.otherpseudo-likelihood-
dc.subject.otherpseudo-likelihood-
dc.subject.othersurvival data-
dc.subject.othersurvival data-
dc.subject.otherweibull proportional hazards frailty model-
dc.subject.otherweibull proportional hazards frailty model-
dc.titleFast and efficient joint modelling of multivariate longitudinal data and time-to-event data with a pairwise-fitting approach-
dc.typeJournal Contribution-
local.format.pages18-
local.bibliographicCitation.jcatA1-
dc.description.notesDe Witte, D (corresponding author), Katholieke Univ Leuven, L BioStat, Kapucijnenvoer 7, B-3000 Leuven, Belgium.-
dc.description.notesdries.dewitte@kuleuven.be-
local.publisher.place1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.statusEarly view-
dc.identifier.doi10.1177/1471082X251328452-
dc.identifier.isi001464973600001-
local.provider.typewosris-
local.description.affiliation[De Witte, Dries; Molenberghs, Geert; Abad, Ariel Alonso; Neyens, Thomas; Verbeke, Geert] Katholieke Univ Leuven, L BioStat, Kapucijnenvoer 7, B-3000 Leuven, Belgium.-
local.description.affiliation[Molenberghs, Geert; Abad, Ariel Alonso; Neyens, Thomas; Verbeke, Geert] Hasselt Univ, I BioStat, Diepenbeek, Belgium.-
local.uhasselt.internationalno-
item.contributorDe Witte , Dries-
item.contributorMOLENBERGHS, Geert-
item.contributorALONSO ABAD, Ariel-
item.contributorNEYENS, Thomas-
item.contributorVERBEKE, Geert-
item.fullcitationDe Witte , Dries; MOLENBERGHS, Geert; ALONSO ABAD, Ariel; NEYENS, Thomas & VERBEKE, Geert (2025) Fast and efficient joint modelling of multivariate longitudinal data and time-to-event data with a pairwise-fitting approach. In: Statistical modelling,.-
item.embargoEndDate2025-10-11-
item.fulltextWith Fulltext-
item.accessRightsEmbargoed Access-
crisitem.journal.issn1471-082X-
crisitem.journal.eissn1477-0342-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Fast and efficient joint modelling of multivariate longitudinal data and time-to-event data with a pairwise-fitting approach.pdf
  Restricted Access
Early view224.28 kBAdobe PDFView/Open    Request a copy
pp.pdf
  Until 2025-10-11
Peer-reviewed author version389.83 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.