Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/45987
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | PAPPA, Michaela | - |
dc.contributor.author | LAMA, Sanjaya | - |
dc.contributor.author | Demir, Irem | - |
dc.contributor.author | VARAS PEREZ, Paula | - |
dc.contributor.author | ADRIAENSENS, Peter | - |
dc.contributor.author | MARCHAL, Wouter | - |
dc.contributor.author | Formosa-Dague, Cécile | - |
dc.contributor.author | VANDAMME, Dries | - |
dc.date.accessioned | 2025-05-14T08:41:32Z | - |
dc.date.available | 2025-05-14T08:41:32Z | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-04-24T08:27:07Z | - |
dc.identifier.citation | Algal research, 89 (Art N° 104028) | - |
dc.identifier.issn | 2211-9264 | - |
dc.identifier.uri | http://hdl.handle.net/1942/45987 | - |
dc.description.abstract | This study investigates the efficient separation of Chlorella sp. microalgae using dissolved air flotation with chitosan as a coagulant. Improving the harvesting process, which significantly contributes to total costs and carbon footprint, could lead to competitive microalgae products and commodities. The exponential phase required 0.20 mg⋅mg 1 1 chitosan, which is almost two times more than the chitosan dose of 0.12 mg⋅mg required for the stationary phase of growth, although the algal biomass concentration had increased from 0.26 ± 0.06 to 0.53 ± 0.01 mg⋅L and the concentration of algal organic matter from 8 to 32 mg C⋅L 1 1 in dissolved organic carbon, respectively. It is also shown, via Microscope Force Spectroscopy, that the cell measured directly from the culture had bound algal organic matter to their surface at pH 8.5, increasing their softness (Young’s Modulus = 8.1 ± 10 kPa), roughness (4.2 ± 2.4 nm) and interaction with bubbles (2.5 ± 2.1 nN, adhesion 64.4 %), compared to the washed cells in PBS buffer at pH 7.4 (1474 ± 1053 kPa; 1.3 ± 0.4 nm; 0.8 ± 0.5 nN, adhesion 9.1 %, respectively). Polysaccharides, mainly containing arabinose (29.2 ± 6.9 % and 33.0 ± 1.7 % dw polysaccharide) and galactose (34.2 ± 8.1 % and 17.43 ± 1.3 % dw), while acidic residues of the polysaccharides (6.7 ± 2.1 % and 13.1 ± 5.8 % Area) were also present along with protein (9.1 ± 2.2 % and 0.9 ± 0.2 % dw AOM) in exponential and stationary growth phase, respectively. Nevertheless, the relationship between AOM composition and its underlying structure and functionality is not yet fully understood. | - |
dc.description.sponsorship | This work was supported by Research Foundation Flanders (FWO junior fundamental research project - G050220N, FWO scientific exchange program Tournesol - VS01322N). Acknowledgements We would like to acknowledge the technicians’ support of Guy Reggers, Jenny Put, Elsy Thijssen, Martine Vanhamel, Bernard Noppen for TGA analyses, Ion Chromatography, HPAEC-PAD, FTIR, and PY-GC/ MS. | - |
dc.language.iso | en | - |
dc.publisher | Elsevier | - |
dc.rights | 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies. | - |
dc.subject.other | microalgae | - |
dc.subject.other | flocculation' cationic polyelectrolyte | - |
dc.subject.other | bridging | - |
dc.subject.other | extracellular polymeric substances | - |
dc.subject.other | dewatering | - |
dc.title | Dissolved air flotation of Chlorella sp. using chitosan: influence of algal organic matter and growth phase on coagulant dose | - |
dc.type | Journal Contribution | - |
dc.identifier.spage | 104028 | - |
dc.identifier.volume | 89 | - |
local.format.pages | 38 | - |
local.bibliographicCitation.jcat | A1 | - |
dc.relation.references | [1] M.J. Barbosa, R.H. Wijffels, M. Janssen, C. Südfeld, S.D. Adamo, Hypes, hopes, and the way forward for microalgal biotechnology, Trends Biotechnol. 41 (2023), https://doi.org/10.1016/j.tibtech.2022.12.017. [2] U.N. Environment, Global Environmental Outlook - GEO-6: Healthy Planet, Healthy People, Cambridge University Press, Nairobi, 2019, https://doi.org/ 10.1017/9781108627146. [3] G.P. ’t Lam, M.H. Vermu¨e, M.H.M. Eppink, R.H. Wijffels, C. van den Berg, Multi- product microalgae biorefineries: from concept towards reality, Trends Biotechnol. 36 (2018) 216–227, https://doi.org/10.1016/j.tibtech.2017.10.011. [4] I. Gifuni, A. Pollio, C. Safi, A. Marzocchella, G. Olivieri, Current bottlenecks and challenges of the microalgal biorefinery, Trends Biotechnol. 37 (2019) 242–252, https://doi.org/10.1016/j.tibtech.2018.09.006. [5] K. Muylaert, A. Beuckels, O. Depraetere, I. Foubert, G. Markou, D. Vandamme, Wastewater as a source of nutrients for microalgae biomass production, in: N. R. Moheimani, M.P. McHenry, K. de Boer, P.A. Bahri (Eds.), Biomass Biofuels from Microalgae Adv. Eng. Biol, Springer International Publishing, Cham, 2015, pp. 75–94, https://doi.org/10.1007/978-3-319-16640-7_5. [6] S. Li, T. Hu, Y. Xu, J. Wang, R. Chu, Z. Yin, F. Mo, L. Zhu, A review on flocculation as an efficient method to harvest energy microalgae: mechanisms, performances, influencing factors and perspectives, Renew. Sustain. Energy Rev. 131 (2020) 110005, https://doi.org/10.1016/j.rser.2020.110005. [7] F. Roselet, D. Vandamme, K. Muylaert, P.C. Abreu, in: A. Alam, Z. Wang (Eds.), Part II Microalgae for Biofuel Production, Microalgae Biotechnol. Dev. Biofuel Wastewater Treat., 2019, pp. 211–244. [8] K.H. Min, D.H. Kim, M.R. Ki, S.P. Pack, Recent progress in flocculation, dewatering, and drying technologies for microalgae utilization: scalable and low- cost harvesting process development, Bioresour. Technol. 344 (2022) 126404, https://doi.org/10.1016/j.biortech.2021.126404. [9] J. Phasey, D. Vandamme, H.J. Fallow, Harvesting of algae in municipal wastewater treatment by calcium phosphate precipitation mediated by photosynthesis, sodium hydroxide and lime, Algal Res. 27 (2017) 115–120, https://doi.org/10.1016/j.algal.2017.06.015. [10] M. Al-Sahari, A.A.S. Al-Gheethi, R.M.S.R. Mohamed, in: A.A.S. Al-Gheethi, R.M.S. R. Mohamed, E.A. Noman, A. Hashim M. Kassim (Eds.), Natural Coagulates for Wastewater Treatment; A Review for Application and Mechanism, Prospect. Fresh Mark. Wastes Manag. Dev. Ctries, 2020, pp. 17–32. [11] A.L. Ahmad, M. Yasin, N. Hidayah, C. Derek, J. Lim, Optimization of microalgae coagulation process using chitosan, Chem. Eng. J. 173 (2011) 879–882, https:// doi.org/10.1016/j.cej.2011.07.070. [12] G. Chen, L. Zhao, Y. Qi, Y. Cui, Chitosan and its derivatives applied in harvesting microalgae for biodiesel production: an outlook, J. Nanomater. 2014 (2014). [13] Y. Wang, W. Sun, L. Ding, W. Liu, L. Tian, Y. Zhao, M. Zhang, X. Wang, A study on the feasibility and mechanism of enhanced co-coagulation dissolved air flotation with chitosan-modified microbubbles, J. Water Process Eng. 40 (2021) 1–11. [14] F.H.M. Yunos, N.M. Nasir, H.H.W. Jusoh, H. Khatoon, S.S. Lam, A. Jusoh, Harvesting of microalgae (Chlorella sp.) from aquaculture bioflocs using an environmental-friendly chitosan-based bio-coagulant, Int. Biodeter. Biodegr. 124 (2017) 243–249, https://doi.org/10.1016/j.ibiod.2017.07.016. [15] S. Bhalkaran, L.D. Wilson, Investigation of self-assembly processes for chitosan- based coagulant-flocculant systems: a mini-review, Int. J. Mol. Sci. 17 (2016) 1662, https://doi.org/10.3390/ijms17101662. [16] I. Agerkvist, Mechanisms of flocculation with chitosan in Escherichia coli disintegrates: effects of urea and chitosan characteristics, Colloids Surf. 173 (1992) 173–187. [17] X. Zang, H. Zhang, Q. Liu, L. Li, L. Li, X. Zhang, Harvesting of Microcystis flos- aquae using chitosan coagulation: influence of proton-active functional groups originating from extracellular and intracellular organic matter, Water Res. 185 (2020), https://doi.org/10.1016/j.watres.2020.116272. [18] J. Blockx, A. Verfaillie, W. Thielemans, K. Muylaert, Unravelling the mechanism of chitosan-driven flocculation of microalgae in seawater as a function of pH, ACS Sustain. Chem. Eng. 6 (2018) 11273–11279, https://doi.org/10.1021/ acssuschemeng.7b04802. [19] S. Cheng, H. Zhang, L. Li, T. Yu, Y. Wang, D. Tan, X. Zhang, Harvesting of Microcystis flos-aquae using dissolved air flotation: the inhibitory effect of carboxyl groups in uronic acid-containing carbohydrates, Chemosphere 300 (2022) 134466, https://doi.org/10.1016/j.chemosphere.2022.134466. [20] I. Demir, J. Blockx, E. Dague, P. Guiraud, W. Thielemans, K. Muylaert, C. Formosa-Dague, Nanoscale evidence unravels microalgae flocculation mechanism induced by chitosan, ACS Appl. Bio Mater. 3 (2020) 8446–8459, https://doi.org/10.1021/acsabm.0c00772. [21] Y. Gerchman, B. Vasker, M. Tavasi, Y. Mishael, Y. Kinel-tahan, Effective harvesting of microalgae: comparison of different polymeric flocculants, Bioresour. Technol. 228 (2017) 141–146, https://doi.org/10.1016/j. biortech.2016.12.040. [22] R.K. Henderson, S.A. Parsons, B. Jefferson, The impact of differing cell and algogenic organic matter (AOM) characteristics on the coagulation and flotation of algae, Water Res. 44 (2010) 3617–3624, https://doi.org/10.1016/j. watres.2010.04.016. [23] N.R.H. Rao, A.M. Granville, P.R. Wich, R.K. Henderson, Detailed algal extracellular carbohydrate-protein characterisation lends insight into algal solid- liquid separation process outcomes, Water Res. 178 (2020) 115833, https://doi. org/10.1016/j.watres.2020.115833. [24] N.R.H. Rao, A.M. Granville, R.K. Henderson, Understanding variability in algal solid-liquid separation process outcomes by manipulating extracellular protein- carbohydrate interactions, Water Res. 190 (2021) 116747, https://doi.org/ 10.1016/j.watres.2020.116747. [25] O. Hoyer, B. Lüsse, H. Bernhardt, Isolation and characterization o´I extracellular organic matter (EOM) from algae, Zeitschrift Für Wasser- Und Abwasser-Forsch. 18 (1985) 76–90. [26] H. Bernhardt, O. Hoyer, H. Schell, B. Lüsse, Reaction mechanisms involved in the influence of algogenic organic matter on flocculation, Zeitschrift Für Wasser- Und Abwasser-Forsch. 18 (1985) 18–30. [27] M. Pivokonsky, J. Safarikova, P. Bubakova, L. Pivokonska, Coagulation of peptides and proteins produced by Microcystis aeruginosa: interaction mechanisms and the effect of Fe-peptide/protein complexes formation, Water Res. 6 (2012) 3–10. [28] R.K. Henderson, S.A. Parsons, B. Jefferson, The impact of differing cell and algogenic organic matter (AOM) characteristics on the coagulation and flotation of algae, Water Res. 44 (2010) 3617–3624, https://doi.org/10.1016/j. watres.2010.04.016. [29] C.A. Laamanen, G.M. Ross, J.A. Scott, Flotation harvesting of microalgae, Renew. Sustain. Energy Rev. 58 (2016) 75–86, https://doi.org/10.1016/j. rser.2015.12.293. [30] A.F. Esteves, C.J. Almeida, A.L. Gonçalves, J.C. Pires, Microalgae harvesting techniques, in: E. Jacob-Lopes, M.M. Maroneze, M.I. Queiroz, L.Q.B.T.-H. of M.-B. P, P. Zepka (Eds.), Handb. Microalgae-Based Process. Prod, Academic Press, 2020, pp. 225–281, https://doi.org/10.1016/B978-0-12-818536-0.00010-5. [31] H. Zhang, X. Zhang, Microalgal harvesting using foam flotation: a critical review, Biomass Bioenergy 120 (2019) 176–188, https://doi.org/10.1016/j. biombioe.2018.11.018. [32] N. Rajapakse, M. Zargar, T. Sen, M. Khiadani, Effects of influent physicochemical characteristics on air dissolution, bubble size and rise velocity in dissolved air flotation: a review, Sep. Purif. Technol. 289 (2022) 120772. [33] J.K. Edzwald, Dissolved air flotation and me, Water Res. 44 (2010) 2077–2106, https://doi.org/10.1016/j.watres.2009.12.040. [34] S.L. Pahl, A.K. Lee, T. Kalaitzidis, P.J. Ashman, S. Sathe, D.M. Lewis, Harvesting, thickening and dewatering microalgae biomass, in: M.A. Borowitzka, N. R. Moheimani (Eds.), Algae for Biofuels and Energy, 5th ed., Springer Science+Business Media, Dordrecht, 2013, pp. 165–185, https://doi.org/10.1007/978-94- 007-5479-9. [35] J.K. Edzwald, Dissolved air flotation and me, Water Res. 44 (2010) 2077–2106, https://doi.org/10.1016/j.watres.2009.12.040. [36] S.F. Han, W. Jin, R. Tu, S.H. Gao, X. Zhou, Microalgae harvesting by magnetic flocculation for biodiesel production: current status and potential, World J. Microbiol. Biotechnol. 36 (2020) 1–10, https://doi.org/10.1007/s11274-020- 02884-5. [37] Z. Yang, J. Hou, L. Miao, Harvesting freshwater microalgae with natural polymer flocculants, Algal Res. 57 (2021) 102358, https://doi.org/10.1016/j. algal.2021.102358. [38] A. Verfaillie, J. Blockx, K. Muylaert, R. Praveenkumar, W. Thielemans, Harvesting of marine microalgae using cationic cellulose nanocrystals, Carbohydr. Polym. 240 (2020). [39] H. Salehizadeh, N. Yan, R. Farnood, Recent advances in polysaccharide bio-based flocculants, Biotechnol. Adv. 36 (2018) 92–119, https://doi.org/10.1016/j. biotechadv.2017.10.002. [40] B.T. Iber, V.T. Okomoda, S.A. Rozaimah, N.A. Kasan, Eco-friendly approaches to aquaculture wastewater treatment: assessment of natural coagulants vis-a-vis chitosan, Bioresour. Technol. Reports 15 (2021) 100702, https://doi.org/ 10.1016/j.biteb.2021.100702. [41] S. Rossi, S. Visigalli, F. Castillo Cascino, M. Mantovani, V. Mezzanotte, K. Parati, R. Canziani, A. Turolla, E. Ficara, Metal-based flocculation to harvest microalgae: a look beyond separation efficiency, Sci. Total Environ. 799 (2021) 149395, https://doi.org/10.1016/j.scitotenv.2021.149395. [42] W.M. Kedir, G.F. Abdi, M.M. Goro, L.D. Tolesa, Pharmaceutical and drug delivery applications of chitosan biopolymer and its modified nanocomposite: a review, Heliyon 8 (2022) e10196, https://doi.org/10.1016/j.heliyon.2022.e10196. [43] European Commission, Food and Feed Information Portal Database _ Chitosan, Comm. Regul. 432/2012. https://ec.europa.eu/food/food-feed-portal/screen /novel-food-catalogue/search%0Ahttps://ec.europa.eu/food/food-feed-portal /screen/feed-additives/search, 2012. [44] P. Baldrick, The safety of chitosan as a pharmaceutical excipient, Regul. Toxicol. Pharmacol. 56 (2010) 290–299, https://doi.org/10.1016/j.yrtph.2009.09.015. [45] I. Aranaz, A.R. Alc´antara, M.C. Civera, B. Elorza, A.H. Caballero, N. Acosta, Chitosan: an overview of its properties and applications, Polymers (Basel). 13 (2021) 3256. [46] C.N. Ogbonna, E.G. Nwoba, Bio-based flocculants for sustainable harvesting of microalgae for biofuel production. A review, Renew. Sustain. Energy Rev. 139 (2021) 110690, https://doi.org/10.1016/j.rser.2020.110690. [47] H. Jethani, U.H. Hebbar, Plant-based biopolymers: emerging bio-flocculants for microalgal biomass recovery, Rev. Environ. Sci. Bio/Technology 20 (2021) 143–165, https://doi.org/10.1007/s11157-020-09561-x. [48] M. Mucci, N.P. Noyma, L. de Magalh˜aes, M. Miranda, F. van Oosterhout, I. A. Guedes, V.L.M. Huszar, M.M. Marinho, M. Lürling, Chitosan as coagulant on cyanobacteria in lake restoration management may cause rapid cell lysis, Water Res. 118 (2017) 121–130, https://doi.org/10.1016/j.watres.2017.04.020. [49] G. Nam, M.M. Mohamed, J. Jung, Novel treatment of Microcystis aeruginosa using chitosan-modified nanobubbles, Environ. Pollut. 292 (2022) 118458, https://doi.org/10.1016/j.envpol.2021.118458. [50] P. Guo, Y. Liu, C. Liu, Effects of chitosan, gallic acid, and algicide on the physiological and biochemical properties of Microcystis flos-aquae, Environ. Sci. Pollut. Res. 22 (2015) 13514–13521, https://doi.org/10.1007/s11356-015-4500- 0. [51] L. Zhu, Z. Li, E. Hiltunen, Microalgae Chlorella vulgaris biomass harvesting by natural flocculant: effects on biomass sedimentation, spent medium recycling and lipid extraction, Biotechnol. Biofuels 11 (2018) 183, https://doi.org/10.1186/ s13068-018-1183-z. [52] D. Tang, H. Ji, L. Zhang, Effects of residual flocculants on cultivation of Auxenochlorella pyrenoidosa: lipid production and transcriptomic insights, Bioresour. Technol. 422 (2025) 132249, https://doi.org/10.1016/j. biortech.2025.132249. [53] S. Cheng, H. Zhang, H. Wang, M. Mubashar, L. Li, X. Zhang, Influence of the algal organic matter in the in-situ flotation removal of Microcystis using positively charged bubbles, Bioresour. Technol. 397 (2024) 130468, https://doi.org/ 10.1016/j.biortech.2024.130468. [54] R. Rippka, J. Deruelles, J.B. Waterbury, M. Herdman, R.Y. Stanier, Generic assignments, strain histories and properties of pure cultures of cyanobacteria, J. Gen. Microbiol. 110 (1979) 1–61. [55] N.R. Moheimani, M.A. Borowitzka, A. Isdepsky, S. Fon Sing, Standard methods for measuring growth of algae and their composition, in: M.A. Borowitzka, N. R. Moheimani (Eds.), Algae for Biofuels and Energy, 5th ed., Springer Science+Business Media, Dordrecht, 2013, pp. 265–288, https://doi.org/10.1007/978-94- 007-5479-9. [56] W. Vercruysse, C.L. Gomes, D. Bleus, M. Pappa, B. Joos, A. Hardy, W. Marchal, D. Vandamme, Demineralization of common ivy-derived biomass and biochar and its effect on the resulting activated carbon properties, Sep. Purif. Technol. 319 (2023) 124023, https://doi.org/10.1016/j.seppur.2023.124023. [57] N.R.H. Rao, A. Gonzalez-Torres, B. Tamburic, Y.W. Wong, I. Foubert, K. Muylaert, R.K. Henderson, D. Vandamme, The influence of physical floc properties on the separation of marine microalgae via alkaline flocculation followed by dissolved air flotation, Algal Res. 71 (2023) 103024, https://doi.org/10.1016/j. algal.2023.103024. [58] S. Lama, K. Muylaert, T.B. Karki, I. Foubert, R.K. Henderson, D. Vandamme, Flocculation properties of several microalgae and a cyanobacterium species during ferric chloride, chitosan and alkaline flocculation, Bioresour. Technol. 220 (2016) 464–470, https://doi.org/10.1016/j.biortech.2016.08.080. [59] I. Demir-Yilmaz, M. Pappa, S. Lama, P. Guiraud, D. Vandamme, C. Formosa- Dague, The biophysical properties of microalgal cell surfaces govern their interactions with an amphiphilic chitosan derivative used for flocculation and flotation, ACS Appl. Bio Mater. (2024), https://doi.org/10.1021/ acsabm.4c00363. [60] I. Demir-Yilmaz, M.S. Ftouhi, S. Balayssac, P. Guiraud, C. Coudret, C. Formosa- Dague, Bubble functionalization in flotation process improve microalgae harvesting, Chem. Eng. J. 452 (2023) 139349, https://doi.org/10.1016/j. cej.2022.139349. [61] H. Hertz, Ueber die beruhrung fester elastischer korper, J. Für Die Reine Und Angew. Math. (1881) 156–171. [62] I. Demir-Yilmaz, M. Schiavone, J. Esvan, P. Guiraud, C. Formosa-Dague, Combining AFM, XPS and chemical hydrolysis to understand the complexity and dynamics of C. vulgaris cell wall composition and architecture, Algal Res. 72 (2023), https://doi.org/10.1016/j.algal.2023.103102. [63] I. Demir, I. Lüchtefeld, C. Lemen, E. Dague, P. Guiraud, T. Zambelli, C. Formosa- dague, Probing the interactions between air bubbles and (bio)interfaces at the nanoscale using FluidFM technology, J. Colloid Interface Sci. 604 (2021) 785–797, https://doi.org/10.1016/j.jcis.2021.07.036. [64] J. Hutter, J. Bechhoefer, Calibration of atomic-force microscope tips, Rev. Sci. Instrum. 64 (1993) 1868–1873, https://doi.org/10.1063/1.1143970. [65] W. Vercruysse, M. Pappa, G. Mangione, D. Desta, A. Hardy, H.G. Boyen, M.K. Van Bael, W. Marchal, D. Vandamme, Improving nitrogen retention in algal biochar pyrolysis by co-pyrolysis with glucose, Adv. Sustain. Syst. 7 (2023) 1–12, https:// doi.org/10.1002/adsu.202300236. [66] S. Lama, M. Pappa, N.B. Watanabe, C.F. Dague, W. Marchal, P. Adriaensens, D. Vandamme, Interference of extracellular soluble algal organic matter on flocculation-sedimentation harvesting of Chlorella sp, Bioresour. Technol. (2024) 131290, https://doi.org/10.1016/j.biortech.2024.131290. [67] D. Fengel, G. Wegener, in: R.D. Brown (Ed.), Hydrolysis of Polysaccharides with Trifluoroacetic Acid and its Application to Rapid Wood and Pulp Analysis, Hydrolys. Cellul. Mech. Enzym. Acid Catal., American Chemical Society, 1979, pp. 145–158. [68] S. Van Wychen, L.M.L. Laurens, Determination of Total Carbohydrates in Algal Biomass - Laboratory Analytical Procedure (LAP), Lab. Anal. Proced. www.nrel. gov/publications, 2015. [69] S. Van Wychen, W. Long, S.K. Black, L.M.L. Laurens, MBTH: a novel approach to rapid, spectrophotometric quantitation of total algal carbohydrates, Anal. Biochem. 518 (2017) 90–93, https://doi.org/10.1016/j.ab.2016.11.014. [70] A. Nagel, S. Sirisakulwat, R. Carle, S. Neidhart, An acetatehydroxide gradient for the quantitation of the neutral sugar and uronic acid profile of pectins by HPAEC-PAD without postcolumn pH adjustment, J. Agric. Food Chem. 62 (2014) 2037–2048. [71] K.S. Dodgson, R.G. Price, A note on the determination of the ester sulphate content of sulphated polysaccharides, Biochem. J. 84 (1962) 106–110. [72] K.S. Dodgson, Determination of inorganic sulphate in studies on the enzymic and non-enzymic hydrolysis of carbohydrate and other sulphate esters, Biochem. J. 78 (1961) 312–319. [73] H.L. Hardell, N.O. Nilvebrant, A rapid method to discriminate between free and esterified fatty acids by pyrolytic methylation using tetramethylammonium acetate or hydroxide, J. Anal. Appl. Pyrolysis 52 (1999) 1–14, https://doi.org/ 10.1016/S0165-2370(99)00035-2. [74] H. Zhang, C. Li, L. Li, S. Cheng, P. Wang, L. Sun, J. Huang, X. Zhang, Uncovering the optimal structural characteristics of flocs for microalgae flotation using Python-OpenCV, J. Clean. Prod. 385 (2023) 135748, https://doi.org/10.1016/j. jclepro.2022.135748. [75] Y.S. Cheng, Y. Zheng, J.M. Labavitch, J.S. Vandergheynst, The impact of cell wall carbohydrate composition on the chitosan flocculation of Chlorella, Process Biochem. 46 (2011) 1927–1933, https://doi.org/10.1016/j.procbio.2011.06.021. [76] H. Bernhardt, J. Clasen, Investigations into the flocculation mechanisms of small algal cells.pdf, Aqua- J. Water Supply Res. Technol. 43 (1994) 222–232. [77] R.K. Henderson, S.A. Parsons, B. Jefferson, Successful removal of algae through the control of zeta potential, Sep. Sci. Technol. 43 (2008) 1653–1666, https://doi. org/10.1080/01496390801973771. [78] J. Safarikova, M. Baresova, M. Pivokonsky, I. Kopecka, Influence of peptides and proteins produced by cyanobacterium Microcystis aeruginosa on the coagulation of turbid waters, Sep. Purif. Technol. 118 (2013) 49–57, https://doi.org/ 10.1016/j.seppur.2013.06.049. [79] S. Hadjoudja, V. Deluchat, M. Baudu, Cell surface characterisation of Microcystis aeruginosa and Chlorella vulgaris, J. Colloid Interface Sci. 342 (2010) 293–299, https://doi.org/10.1016/j.jcis.2009.10.078. [80] X. Zhang, J.C. Hewson, P. Amendola, M. Reynoso, M. Sommerfeld, Y. Chen, Q. Hu, Critical evaluation and modeling of algal harvesting using dissolved air flotation, Biotechnol. Bioeng. 9999 (2014) 1–9, https://doi.org/10.1002/ bit.25300. [81] L. Zhuang, Y. Wu, V. Manuel, D. Espinosa, T. Zhang, G. Dao, H. Hu, Soluble algal products (SAPs) in large scale cultivation of microalgae for biomass/bioenergy production: a review, Renew. Sustain. Energy Rev. 59 (2016) 141–148, https:// doi.org/10.1016/j.rser.2015.12.352. [82] R.K. Henderson, A. Baker, S.A. Parsons, B. Jefferson, Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms, Water Res. 42 (2008) 3435–3445, https://doi.org/10.1016/j. watres.2007.10.032. [83] Z. Yu, H. Pei, Q. Hou, C. Nie, L. Zhang, Z. Yang, X. Wang, The effects of algal extracellular substances on algal growth, metabolism and long-term medium recycle, and inhibition alleviation through ultrasonication, Bioresour. Technol. 267 (2018) 192–200, https://doi.org/10.1016/j.biortech.2018.07.019. [84] F. Zhao, Y. Su, X. Tan, H. Chu, Y. Zhang, L. Yang, Effect of temperature on extracellular organic matter (EOM) of Chlorella pyrenoidosa and effect of EOM on irreversible membrane fouling, Colloids Surfaces B Biointerfaces 136 (2015) 431–439. [85] Y. Chiou, M. Hsieh, H. Yeh, Effect of algal extracellular polymer substances on UF membrane fouling, Desalination 250 (2010) 648–652, https://doi.org/10.1016/j. desal.2008.02.043. [86] C. Matho, K. Schwarzenberger, K. Eckert, B. Keshavarzi, T. Walther, J. Steingroewer, F. Krujatz, Bio-compatible flotation of Chlorella vulgaris: study of zeta potential and flotation efficiency, Algal Res. 44 (2019) 101705, https:// doi.org/10.1016/j.algal.2019.101705. [87] R. Xiao, Y. Zheng, Overview of microalgal extracellular polymeric substances (EPS) and their applications, Biotechnol. Adv. 34 (2016) 1225–1244, https://doi. org/10.1016/j.biotechadv.2016.08.004. [88] M. Pivokonsky, J. Safarikova, M. Baresova, L. Pivokonska, I. Kopecka, A comparison of the character of algal extracellular versus cellular organic matter produced by cyanobacterium, diatom and green alga, Water Res. 51 (2014) 37–46, https://doi.org/10.1016/j.watres.2013.12.022. [89] H. Flemming, J. Wingender, The biofilm matrix, Nat. Rev. Microbiol. 8 (2010) 623–633, https://doi.org/10.1038/nrmicro2415. [90] R.K.L. Yap, M. Whittaker, M. Diao, R.M. Stuetz, B. Jefferson, V. Bulmus, W. L. Peirson, A.V. Nguyen, R.K. Henderson, Hydrophobically-associating cationic polymers as micro-bubble surface modifiers in dissolved air flotation for cyanobacteria cell separation, Water Res. 61 (2014) 253–262, https://doi.org/ 10.1016/j.watres.2014.05.032. [91] C. Laroche, Exopolysaccharides from microalgae and cyanobacteria: diversity of strains, production strategies, and applications, Mar. Drugs 20 (2022) 336. [92] W. Zhang, Q. Cao, G. Xu, D. Wang, Flocculation dewatering behavior of microalgae at different growth stages under inorganic polymeric flocculant treatment: the relationships between algal organic matter and floc dewaterability, ACS Sustain. Chem. Eng. (2018) 11087–11096, https://doi.org/10.1021/ acssuschemeng.8b02551. [93] F. Sun, H. Zhang, A. Qian, H. Yu, C. Xu, R. Pan, Y. Shi, The influence of extracellular polymeric substances on the coagulation process of cyanobacteria, Sci. Total Environ. 720 (2020) 137573. [94] V. Garces, A. García-Quintero, T.A. Lerma, M. Palencia, E.M. Combatt, ´A. A. Arrieta, Characterization of cassava starch and its structural changes resulting of thermal stress by functionally-enhanced derivative spectroscopy (FEDS), Polysaccharides 2 (2021) 866–877, https://doi.org/10.3390/ polysaccharides2040052. [95] L.A. Castillo, O.V. L´opez, M.A. García, S.E. Barbosa, M.A. Villar, Crystalline morphology of thermoplastic starch/talc nanocomposites induced by thermal processing, Heliyon 5 (2019), https://doi.org/10.1016/j.heliyon.2019.e01877. [96] N. Li, P. Wang, S. Wang, C. Wang, H. Zhou, S. Kapur, J. Zhang, Y. Song, Electrostatic charges on microalgae surface: mechanism and applications, J. Environ. Chem. Eng. 10 (2022) 107516, https://doi.org/10.1016/j. jece.2022.107516. [97] J.B. Vergnes, V. Gernigon, P. Guiraud, C. Formosa-Dague, Bicarbonate concentration induces production of exopolysaccharides by Arthrospira platensis that mediate bioflocculation and enhance flotation harvesting efficiency, ACS Sustain. Chem. Eng. 7 (2019) 13796–13804, https://doi.org/10.1021/ acssuschemeng.9b01591. [98] A. Rohman, Y.B.C. Man, Fourier transform infrared (FTIR) spectroscopy for analysis of extra virgin olive oil adulterated with palm oil, Food Res. Int. 43 (2010) 886–892, https://doi.org/10.1016/j.foodres.2009.12.006. [99] B.H.J. Yap, S.A. Crawford, R.R. Dagastine, P.J. Scales, G.J.O. Martin, Nitrogen deprivation of microalgae: effect on cell size, cell wall thickness, cell strength, and resistance to mechanical disruption, J. Ind. Microbiol. Biotechnol. 43 (2016) 1671–1680, https://doi.org/10.1007/s10295-016-1848-1. [100] Y.-S. Cheng, J.M. Labavitch, J.S. Vandergheynst, Elevated CO2 concentration impacts cell wall polysaccharide composition of green microalgae of the genus Chlorella, Lett. Appl. Microbiol. 60 (2014) 1–7, https://doi.org/10.1111/ lam.12320. [101] G. Canelli, P.M. Martínez, S. Austin, M.E. Ambühl, F. Dionisi, C.J. Bolten, R. Carpine, L. Neutsch, A. Mathys, Biochemical and morphological characterization of heterotrophic crypthecodinium cohnii and chlorella vulgaris cell walls, J. Agric. Food Chem. 69 (2021) 2226–2235, https://doi.org/10.1021/ acs.jafc.0c05032. [102] O. Spain, C. Funk, Detailed characterization of the cell wall structure and composition of Nordic green microalgae, J. Agric. Food Chem. 70 (2022) 9711–9721, https://doi.org/10.1021/acs.jafc.2c02783. [103] H. Takeda, Sugar composition of the cell wall and the taxonomy of Chlorella (Chlorophyceae), J. Phycol. 27 (1991) 224–232, https://doi.org/10.1111/j.0022- 3646.1991.00224.x. [104] S. Weber, P.M. Grande, L.M. Blank, H. Klose, Insights into cell wall disintegration of Chlorella vulgaris, PloS One 17 (2022) 1–14, https://doi.org/10.1371/journal. pone.0262500. | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
local.bibliographicCitation.artnr | 104028 | - |
dc.identifier.doi | 10.1016/j.algal.2025.104028 | - |
dc.identifier.isi | 001478571600001 | - |
local.provider.type | - | |
local.uhasselt.international | yes | - |
item.fulltext | With Fulltext | - |
item.contributor | PAPPA, Michaela | - |
item.contributor | LAMA, Sanjaya | - |
item.contributor | Demir, Irem | - |
item.contributor | VARAS PEREZ, Paula | - |
item.contributor | ADRIAENSENS, Peter | - |
item.contributor | MARCHAL, Wouter | - |
item.contributor | Formosa-Dague, Cécile | - |
item.contributor | VANDAMME, Dries | - |
item.embargoEndDate | 2025-11-15 | - |
item.fullcitation | PAPPA, Michaela; LAMA, Sanjaya; Demir, Irem; VARAS PEREZ, Paula; ADRIAENSENS, Peter; MARCHAL, Wouter; Formosa-Dague, Cécile & VANDAMME, Dries (2025) Dissolved air flotation of Chlorella sp. using chitosan: influence of algal organic matter and growth phase on coagulant dose. In: Algal research, 89 (Art N° 104028). | - |
item.accessRights | Embargoed Access | - |
crisitem.journal.issn | 2211-9264 | - |
crisitem.journal.eissn | 2211-9264 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1-s2.0-S2211926425001377-main.pdf Restricted Access | Published version | 1.2 MB | Adobe PDF | View/Open Request a copy |
1-s2.0-S2211926425001377-pre.pdf Until 2025-11-15 | Peer-reviewed author version | 1.18 MB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.