Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/45991
Title: Strategies for mitigating data heterogeneities in AI-based neuro-disease detection
Authors: Leming, Matthew
Kim, Kyungsu
BRUFFAERTS, Rose 
Im, Hyungsoon
Issue Date: 2025
Publisher: CELL PRESS
Source: Neuron, 113 (8) , p. 1129 -1132
Abstract: In this NeuroView, we discuss challenges and best practices when dealing with disease-detection AI models that are trained on heterogeneous clinical data, focusing on the interrelated problems of model bias, causality, and rare diseases.
Notes: Im, H (corresponding author), Massachusetts Gen Hosp, Ctr Syst Biol, Boston, MA 02114 USA.; Im, H (corresponding author), Massachusetts Gen Hosp, Massachusetts Alzheimers Dis Res Ctr, Boston, MA 02114 USA.; Im, H (corresponding author), Massachusetts Gen Hosp, Dept Radiol, Boston, MA 02114 USA.
im.hyungsoon@mgh.harvard.edu
Keywords: Humans;Nervous System Diseases;Artificial Intelligence
Document URI: http://hdl.handle.net/1942/45991
ISSN: 0896-6273
e-ISSN: 1097-4199
DOI: 10.1016/j.neuron.2025.01.028
ISI #: 001473755700001
Rights: 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
Category: A1
Type: Journal Contribution
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
Strategies for mitigating data heterogeneities in AI-based neuro-disease detection.pdf
  Restricted Access
Published version1.76 MBAdobe PDFView/Open    Request a copy
Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.