Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/45996
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMEERT, Mathijs-
dc.contributor.authorDe Wijs, Koen-
dc.contributor.authorFauvart, Maarten-
dc.contributor.authorTHOELEN, Ronald-
dc.date.accessioned2025-05-14T10:52:45Z-
dc.date.available2025-05-14T10:52:45Z-
dc.date.issued2023-
dc.date.submitted2025-04-28T16:51:35Z-
dc.identifier.citation4th European BioSensor Symposium, Aachen, 2023, August 27-30-
dc.identifier.urihttp://hdl.handle.net/1942/45996-
dc.description.abstractElectroporation has become a widely adopted method for the intracellular delivery of exogeneous cargo. Its integration with microfluidics and further miniaturization has further consolidated its usefulness, offering more control, efficiency, and viability by performing electroporation on individual cells. The characteristics of the applied electric pulse define the pore formation and are therefore of critical importance for the efficient delivery of cargo while avoiding negative side-effects (e.g. cytotoxicity). One possible method to further improve electroporation is through the implementation of a feedback loop, adjusting the pulse parameters based on electroporation outcome. However, current evaluation methods, like fluorescence microscopy, do not allow for such dynamic optimization scheme. This works aims to monitor the in-flow electroporation process in real time using the impedance cytometry principle. The combination of electroporation and impedance cytometry has been shown before using macroscopic wire electrodes and a constriction channel geometry. Our device further miniaturizes this process by using embedded electrodes inside a microfluidic channel, offering more control and sensitivity, paving the way for a dynamic optimization process.-
dc.language.isoen-
dc.publisher4th European BioSensor Symposium-
dc.subject.otherIntra-cellular delivery-
dc.subject.otherImpedance Cytometry-
dc.subject.otherElectroporation-
dc.titleReal time in-situ monitoring of in-flow electroporation using impedance cytometry-
dc.typeConference Material-
local.bibliographicCitation.conferencedate2023, August 27-30-
local.bibliographicCitation.conferencename4th European BioSensor Symposium-
local.bibliographicCitation.conferenceplaceAachen-
dc.identifier.epage207-
dc.identifier.spage207-
local.bibliographicCitation.jcatC2-
local.publisher.place4th European BioSensor Symposium-
dc.relation.references[1] Duckert, B., Vinkx, S., Braeken, D. & Fauvart, M.. Journal of Controlled Release 330, 963–975 (2021). [2] Sung-Eun Choi, Harrison Khoo & Hur, S. C. Chemical Reviews (2022) doi: 10.1021/acs.chemrev.1c00677. [3] Ye, Y. et al. Micromachines 11, 856 (2020).-
local.type.refereedNon-Refereed-
local.type.specifiedConference Material - Abstract-
dc.identifier.eissn1520-6890-
local.provider.typePdf-
local.uhasselt.internationalno-
item.contributorMEERT, Mathijs-
item.contributorDe Wijs, Koen-
item.contributorFauvart, Maarten-
item.contributorTHOELEN, Ronald-
item.fullcitationMEERT, Mathijs; De Wijs, Koen; Fauvart, Maarten & THOELEN, Ronald (2023) Real time in-situ monitoring of in-flow electroporation using impedance cytometry. In: 4th European BioSensor Symposium, Aachen, 2023, August 27-30.-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Abstract_EBS-2023_MathijsMeert.pdfConference material113.28 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.