Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/46010
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVanhele, Bram-
dc.contributor.authorZOOMERS, Brent-
dc.contributor.authorPUT, Jeroen-
dc.contributor.authorVAN REETH, Frank-
dc.contributor.authorMICHIELS, Nick-
dc.date.accessioned2025-05-15T09:14:42Z-
dc.date.available2025-05-15T09:14:42Z-
dc.date.issued2025-
dc.date.submitted2025-04-30T06:06:27Z-
dc.identifier.urihttp://hdl.handle.net/1942/46010-
dc.description.abstractGenerating synthetic images is a useful method for cheaply obtaining labeled data for training computer vision models. However, obtaining accurate 3D models of relevant objects is necessary, and the resulting images often have a gap in realism due to challenges in simulating lighting effects and camera artifacts. We propose using the novel view synthesis method called Gaussian Splatting to address these challenges. We have developed a synthetic data pipeline for generating high-quality context-aware instance segmentation training data for specific objects. This process is fully automated, requiring only a video of the target object. We train a Gaussian Splatting model of the target object and automatically extract the object from the video. Leveraging Gaussian Splatting, we then render the object on a random background image, and monocular depth estimation is employed to place the object in a believable pose. We introduce a novel dataset to validate our approach and show superior performance over other data generation approaches, such as Cut-and-Paste and Diffusion model-based generation.-
dc.language.isoen-
dc.publisherarXiv-
dc.subject.otherComputer Vision and Pattern Recognition (cs.CV)-
dc.subject.otherFOS: Computer and information sciences-
dc.subject.otherFOS: Computer and information sciences-
dc.titleCut-and-Splat: Leveraging Gaussian Splatting for Synthetic Data Generation-
dc.typePreprint-
local.bibliographicCitation.jcatO-
local.type.refereedNon-Refereed-
local.type.specifiedPreprint-
dc.identifier.doi10.48550/arXiv.2504.08473-
local.provider.typePdf-
local.dataset.urlhttps://github.com/EDM-Research/cut-and-splat-
local.uhasselt.internationalno-
local.contributor.datacreatorVanherle, Bram-
local.contributor.datacreatorZoomers, Brent-
local.contributor.datacreatorPut, Jeroen-
local.contributor.datacreatorVan Reeth, Frank-
local.contributor.datacreatorMichiels, Nick-
dc.rights.accessCreative Commons Attribution Non Commercial No Derivatives 4.0 International-
item.contributorVanhele, Bram-
item.contributorZOOMERS, Brent-
item.contributorPUT, Jeroen-
item.contributorVAN REETH, Frank-
item.contributorMICHIELS, Nick-
item.contributorVanherle, Bram-
item.contributorZoomers, Brent-
item.contributorPut, Jeroen-
item.contributorVan Reeth, Frank-
item.contributorMichiels, Nick-
item.fullcitationVanhele, Bram; ZOOMERS, Brent; PUT, Jeroen; VAN REETH, Frank & MICHIELS, NickVanherle, Bram; Zoomers, Brent; Put, Jeroen; Van Reeth, Frank & Michiels, Nick (2025) Cut-and-Splat: Leveraging Gaussian Splatting for Synthetic Data Generation.-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
cut_and_splat_preprint.pdfNon Peer-reviewed author version15.85 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.