Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/46012Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | ASGHAR, Sabia | - |
| dc.contributor.author | VERMOLEN, Fred | - |
| dc.date.accessioned | 2025-05-15T09:42:14Z | - |
| dc.date.available | 2025-05-15T09:42:14Z | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-05-07T13:27:02Z | - |
| dc.identifier.citation | Adélia Sequeira, Ana Silvestre, Svilen S. Valtchev, João Janela (Eds.). Numerical Mathematics and Advanced Applications ENUMATH 2023, Volume 2 European Conference, September 4-8, Lisbon, Portugal, Springer Nature, p. 468 -476 | - |
| dc.identifier.isbn | 978-3-031-86168-0 | - |
| dc.identifier.isbn | 978-3-031-86169-7 | - |
| dc.identifier.issn | 1439-7358 | - |
| dc.identifier.issn | 2197-7100 | - |
| dc.identifier.uri | http://hdl.handle.net/1942/46012 | - |
| dc.description.abstract | We propose a novel one–dimensional model for morpho–poroelasticity. This model combines mechanical displacement with tissue growth or shrinkage. This tissue growth or shrinkage may be caused by biological processes such as secretion of collagen, cell proliferation or by micro-structural changes of the collagen phase. The central focus of our study revolves around a comprehensive linear stability analysis of the equilibrium state within the proposed model. This analytical approach allows us to assess the stability of the system under different perturbation conditions which is critical for predicting the behavior of the system over time and under various external influences. Additionally, numerical experiments are included to visually demonstrate the proposed concept. | - |
| dc.description.sponsorship | We acknowledge HEC grant: 1(2)/HRD/OSS-III/BATCH-3/2022/HEC/527 from Pakistan. | - |
| dc.language.iso | en | - |
| dc.publisher | Springer Nature | - |
| dc.relation.ispartofseries | conference proceedings Numerical Mathematics and Advanced Applications | - |
| dc.rights | 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG | - |
| dc.title | Stability of Equilibria in a One Dimensional Model for Morpho–Poroelasticity for Soft Tissues | - |
| dc.type | Proceedings Paper | - |
| local.bibliographicCitation.authors | Sequeira, Adélia | - |
| local.bibliographicCitation.authors | Silvestre, Ana | - |
| local.bibliographicCitation.authors | Valtchev, Svilen S. | - |
| local.bibliographicCitation.authors | Janela, João | - |
| local.bibliographicCitation.conferencedate | 2023, September 4-8 | - |
| local.bibliographicCitation.conferencename | ENUMATH 2023 | - |
| local.bibliographicCitation.conferenceplace | Lisbon, Portugal | - |
| dc.identifier.epage | 476 | - |
| dc.identifier.spage | 468 | - |
| dc.identifier.volume | 154 | - |
| local.bibliographicCitation.jcat | C1 | - |
| local.type.refereed | Refereed | - |
| local.type.specified | Proceedings Paper | - |
| local.relation.ispartofseriesnr | 2 | - |
| dc.identifier.doi | 10.1007/978-3-031-86169-7_48 | - |
| local.provider.type | CrossRef | - |
| local.bibliographicCitation.btitle | Numerical Mathematics and Advanced Applications ENUMATH 2023, Volume 2 European Conference, September 4-8, Lisbon, Portugal | - |
| local.uhasselt.international | no | - |
| item.accessRights | Open Access | - |
| item.fullcitation | ASGHAR, Sabia & VERMOLEN, Fred (2025) Stability of Equilibria in a One Dimensional Model for Morpho–Poroelasticity for Soft Tissues. In: Adélia Sequeira, Ana Silvestre, Svilen S. Valtchev, João Janela (Eds.). Numerical Mathematics and Advanced Applications ENUMATH 2023, Volume 2 European Conference, September 4-8, Lisbon, Portugal, Springer Nature, p. 468 -476. | - |
| item.fulltext | With Fulltext | - |
| item.contributor | ASGHAR, Sabia | - |
| item.contributor | VERMOLEN, Fred | - |
| Appears in Collections: | Research publications | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Enumath_2023.pdf | Peer-reviewed author version | 396.35 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.