Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/46102
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBOLLEN, Jeroen-
dc.contributor.authorVAN DEN BUSSCHE, Jan-
dc.contributor.authorVANSUMMEREN, Stijn-
dc.contributor.authorVIRTEMA, Jonni-
dc.date.accessioned2025-06-04T10:29:27Z-
dc.date.available2025-06-04T10:29:27Z-
dc.date.issued2025-
dc.date.submitted2025-05-21T14:21:49Z-
dc.identifier.urihttp://hdl.handle.net/1942/46102-
dc.description.abstractGraph Neural Networks (GNNs) are a class of machine-learning models that operate on graph-structured data. Their expressive power is intimately related to logics that are invariant under graded bisimilarity. Current proposals for recurrent GNNs either assume that the graph size is given to the model, or suffer from a lack of termination guarantees. In this paper, we propose a halting mechanism for recurrent GNNs. We prove that our halting model can express all node classifiers definable in graded modal mu-calculus, even for the standard GNN variant that is oblivious to the graph size. A recent breakthrough in the study of the expressivity of graded modal mu-calculus in the finite suggests that conversely, restricted to node classifiers definable in monadic second-order logic, recurrent GNNs can express only node classifiers definable in graded modal mu-calculus. To prove our main result, we develop a new approximate semantics for graded mu-calculus, which we believe to be of independent interest. We leverage this new semantics into a new model-checking algorithm, called the counting algorithm, which is oblivious to the graph size. In a final step we show that the counting algorithm can be implemented on a halting recurrent GNN.-
dc.language.isoen-
dc.subjectComputer Science - Learning-
dc.subjectComputer Science - Learning-
dc.subjectComputer Science - Artificial Intelligence-
dc.subjectComputer Science - Logic in Computer Science-
dc.subject.otherComputer Science - Learning-
dc.subject.otherComputer Science - Artificial Intelligence-
dc.subject.otherComputer Science - Logic in Computer Science-
dc.titleHalting Recurrent GNNs and the Graded μ-Calculus-
dc.typePreprint-
local.format.pages19-
local.bibliographicCitation.jcatO-
local.type.refereedNon-Refereed-
local.type.specifiedPreprint-
dc.identifier.arxiv2505.11050-
dc.identifier.urlhttp://arxiv.org/abs/2505.11050v1-
local.provider.typeArXiv-
local.uhasselt.internationalyes-
item.fulltextWith Fulltext-
item.contributorBOLLEN, Jeroen-
item.contributorVAN DEN BUSSCHE, Jan-
item.contributorVANSUMMEREN, Stijn-
item.contributorVIRTEMA, Jonni-
item.fullcitationBOLLEN, Jeroen; VAN DEN BUSSCHE, Jan; VANSUMMEREN, Stijn & VIRTEMA, Jonni (2025) Halting Recurrent GNNs and the Graded μ-Calculus.-
item.accessRightsOpen Access-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
main-arxiv.pdfNon Peer-reviewed author version417.87 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.