Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/46113
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | SARTIRANO, Daniele | - |
dc.contributor.author | Morecchiato, F | - |
dc.contributor.author | Antonellic, A | - |
dc.contributor.author | Lotti, T | - |
dc.contributor.author | Morelli, D | - |
dc.contributor.author | Ramazzotti, M | - |
dc.contributor.author | Rossolini, GM | - |
dc.contributor.author | Lubello, C | - |
dc.date.accessioned | 2025-06-05T11:44:38Z | - |
dc.date.available | 2025-06-05T11:44:38Z | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2025-05-19T15:40:52Z | - |
dc.identifier.citation | Journal of water and health, 22 (8) , p. 1516 -1526 | - |
dc.identifier.uri | http://hdl.handle.net/1942/46113 | - |
dc.description.abstract | Wastewater-based epidemiology (WBE) has emerged as a valuable tool for COVID-19 monitoring, especially as the frequency of clinical testing diminishes. Beyond COronaVIrus Disease 19 (COVID-19), the tool's versatility extends to addressing various public health concerns, including antibiotic resistance and drug consumption. However, the complexity of sewage systems introduces noise when measuring chemical tracer concentrations, potentially compromising their applicability for modeling. In our study, we detail the approach adopted to determine the concentration of severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) ribonucleiec acid (RNA) in wastewater from the Ponte a Niccheri wastewater treatment plant in Tuscany (Italy), with a sample size of N = 13,935 inhabitants. The unique characteristics of this wastewater system, including mandatory pretreatment in septic tanks with extended retention times, the presence of a hospital for COVID-19 patients, and mixed sewage networks, posed additional challenges. Nevertheless, our results highlight a robust and significant correlation between our measurements and the number of infections within the wastewater treatment plant's catchment area at the time of sampling. A simple linear model also shows promising results in estimating the number of infected people within the area. | - |
dc.language.iso | en | - |
dc.publisher | - | |
dc.subject.other | wastewater | - |
dc.subject.other | COVID-19 | - |
dc.subject.other | septic tanks | - |
dc.subject.other | hospital | - |
dc.subject.other | linear model | - |
dc.title | Verifying the feasibility of wastewater-based epidemiological monitoring for the small catchment and sewage networks with significant pretreatment | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 1526 | - |
dc.identifier.issue | 8 | - |
dc.identifier.spage | 1516 | - |
dc.identifier.volume | 22 | - |
local.bibliographicCitation.jcat | A1 | - |
dc.relation.references | Abdolahnejad A., Pourakbar M., Raeghi S., Mohammadi A., Ranjbar B. & Behnami A. 2022 Experimental protocol for detecting SARS-CoV-2 in screenings and grit samples of wastewater treatment plants. Journal of Environmental Health and Sustainable Development 7, 1727–1732. Ahmed W., Tscharke B., Bertsch P. M., Bibby K., Bivins A., Choi P., Clarke L., Dwyer J., Edson J., Nguyen T. M. H., O'Brien J. W., Simpson S. L., Sherman P., Thomas K. V., Verhagen R., Zaugg J. & Mueller J. F. 2021 SARS-CoV-2 RNA monitoring in wastewater as a potential early warning system for COVID-19 transmission in the community: A temporal case study. Science of the Total Environment 761, 144216. Bibby K., Bivins A., Wu Z. & North D. 2021 Making waves: Plausible lead time for wastewater based epidemiology as an early warning system for COVID-19. Water Research 202, 117438. Foladori P., Cutrupi F., Segata N., Manara S., Pinto F., Malpei F., Bruni L. & La Rosa G. 2020 SARS-CoV-2 from faeces to wastewater treatment: What do we know? A review. Science of the Total Environment 743, 140444. Gagliano E., Biondi D. & Roccaro P. 2023 Wastewater-based epidemiology approach: The learning lessons from COVID-19 pandemic and the development of novel guidelines for future pandemics. Chemosphere 313, 137361. Hart O. E. & Halden R. U. 2020 Computational analysis of SARS-CoV-2/COVID-19 surveillance by wastewater-based epidemiology locally and globally: Feasibility, economy, opportunities and challenges. Science of the Total Environment 730, 138875. Huisman J. S., Scire J., Caduff L., Fernandez-Cassi X.,Ganesanandamoorthy P., Kull A., Scheidegger A., Stachler E., Boehm A. B., Hughes B., Knudson A., Topol A., Wigginton K. R., Wolfe M. K., Kohn T., Ort C., Stadler T. & Julian T. R. 2022 Wastewater-based estimation of the effective reproductive number of SARS-CoV-2. Environmental Health Perspectives 130, 057011. Italian Ministry of Health 2022 Circular Letter n. 9498 of 4 April 2022. Update on Quarantine and Self-Surveillance Measures for Close (High-Risk) Contacts of SARS-CoV-2 Infection Cases [Aggiornamento Sulle Misure di Quarantena e Autosorveglianza per i Contatti Stretti (ad Alto Rischio) di Casi di Infezione da SARS-Cov-2]. La Rosa G., Mancini P., Ferraro G. B., Veneri C., Iaconelli M., Bonadonna L., Lucentini L. & Suffredini E. 2021 SARS-CoV-2 has been circulating in northern Italy since December 2019: Evidence from environmental monitoring. Science of the Total Environment 750, 141711. Li D., Quon H., Ervin J., Jiang S., Rosso D., Van De Werfhorst L. C., Steets B. & Holden P. A. 2023 Modeled and measured SARS-CoV-2 virus in septic tank systems for wastewater surveillance. Journal of Water and Health 21, 1242–1256. Lundy L., Fatta-Kassinos D., Slobodnik J., Karaolia P., Cirka L., Kreuzinger N., Castiglioni S., Bijlsma L., Dulio V., Deviller G., Lai F. Y., Alygizakis N., Barneo M., Baz-Lomba J. A., Béen F., Cíchová M., Conde-Pérez K., Covaci A., Donner E., Ficek A., Hassard F., Hedström A., Hernandez F., Janská V., Jellison K., Hofman J., Hill K., Hong P.-Y., Kasprzyk-Hordern B., Kolarević S., Krahulec J., Lambropoulou D., de Llanos R., Mackuľak T., Martinez-García L., Martínez F., Medema G., Micsinai A., Myrmel M., Nasser M., Niederstätter H., Nozal L., Oberacher H., Očenášková V., Ogorzaly L., Papadopoulos D., Peinado B., Pitkänen T., Poza M., Rumbo-Feal S., Sánchez M. B., Székely A. J., Soltysova A., Thomaidis N. S., Vallejo J., van Nuijs A., Ware V. & Viklander M. 2021 Making waves: Collaboration in the time of SARS-CoV-2 – Rapid development of an international co-operation and wastewater surveillance database to support public health decision-making. Water Research 199, 117167. Medema G., Heijnen L., Elsinga G., Italiaander R. & Brouwer A. 2020a Presence of SARS-Coronavirus-2 RNA in sewage and correlation with reported COVID-19 prevalence in the early stage of the epidemic in The Netherlands. Environmental Science & Technology Letters 7, 511–516. Medema G., Been F., Heijnen L. & Petterson S. 2020b Implementation of environmental surveillance for SARS-CoV-2 virus to support public health decisions: Opportunities and challenges. Current Opinion in Environmental Science & Health 17, 49–71. Moore B. 1951 The detection of enteric carriers in towns by means of sewage examination. Journal of the Royal Sanitary Institute 71, 57–60. Morecchiato F., Coppi M., Niccolai C., Antonelli A., Di Gloria L., Calà P., Man-cuso F., Ramazzotti M., Lotti T., Lubello C. & Rossolini G. M. 2024 Evaluation of different molecular systems for detection and quantification of SARS-CoV-2 RNA from wastewater samples. Journal of Virological Methods 328, 114956. Randazzo W., Truchado P., Cuevas-Ferrando E., Simón P., Allende A. & Sánchez G. 2020 SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area. Water Research 181, 115942. Sguanci S., Lubello C., Caffaz S. & Lotti T. 2019 Long-term stability of aerobic granular sludge for the treatment of very low-strength real domestic wastewater. Journal of Cleaner Production 222, 882–890. Yang G., Wang Y., Zeng Y., Gao G. F., Liang X., Zhou M., Wan X., Yu S., Jiang Y., Naghavi M., Vos T., Wang H., Lopez A. D. & Murray C. J. L. 2013 Rapid health transition in China, 1990–2010: Findings from the Global Burden of Disease Study 2010. The Lancet 381, 1987–2015. | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.identifier.doi | 10.2166/wh.2024.121 | - |
dc.identifier.isi | WOS:001282811600001 | - |
local.provider.type | Web of Science | - |
local.uhasselt.international | yes | - |
item.contributor | SARTIRANO, Daniele | - |
item.contributor | Morecchiato, F | - |
item.contributor | Antonellic, A | - |
item.contributor | Lotti, T | - |
item.contributor | Morelli, D | - |
item.contributor | Ramazzotti, M | - |
item.contributor | Rossolini, GM | - |
item.contributor | Lubello, C | - |
item.fullcitation | SARTIRANO, Daniele; Morecchiato, F; Antonellic, A; Lotti, T; Morelli, D; Ramazzotti, M; Rossolini, GM & Lubello, C (2024) Verifying the feasibility of wastewater-based epidemiological monitoring for the small catchment and sewage networks with significant pretreatment. In: Journal of water and health, 22 (8) , p. 1516 -1526. | - |
item.fulltext | With Fulltext | - |
item.accessRights | Open Access | - |
crisitem.journal.issn | 1477-8920 | - |
crisitem.journal.eissn | 1996-7829 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
jwh2024121.pdf | Published version | 710.73 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.