Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/46344
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVANBRABANT, Sebe-
dc.contributor.authorEERLINGS, Gilles-
dc.contributor.authorROVELO RUIZ, Gustavo-
dc.contributor.authorVANACKEN, Davy-
dc.date.accessioned2025-07-09T09:41:32Z-
dc.date.available2025-07-09T09:41:32Z-
dc.date.issued2025-
dc.date.submitted2025-06-30T08:01:04Z-
dc.identifier.citationProceedings of the Acm on Human-computer Interaction, 9 (4) , p. 1 -33 (Art N° EICS014)-
dc.identifier.urihttp://hdl.handle.net/1942/46344-
dc.description.abstractThis paper introduces ECHO, an LLM-powered system framework to explore and interrogate the internals of AI models through tool-augmented language models. While traditional XAI methods typically offer a small and technical set of explanation types, ECHO advances the accessibility and usability of AI explanations through a conversational approach, combining LLMs with a collection of tools and a human-in-the-loop process. We identify various explanation types from the literature, for which we create a set of predefined tools for tabular data. Using a modular architecture, ECHO integrates these predefined tools with dynamically generated tools to interact with AI models, facilitating tailored explanations for a large variety of user queries. This paper details ECHO’s design, implementation, and use cases, demonstrating its capabilities in the context of a movie recommender, healthcare decision tree and neural network for educational classification.-
dc.description.sponsorshipT his work was funded by the Flemish Government under the “Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen” program, R-13509, and by the Special Research Fund (BOF) of Hasselt University, BOF23OWB31.-
dc.language.isoen-
dc.publisherACM-
dc.rights2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.-
dc.subject.otherIntelligibility-
dc.subject.otherInterpretability-
dc.subject.otherExplainability-
dc.subject.otherExplainable AI-
dc.subject.otherArtificial Intelligence-
dc.subject.otherMachine Learning-
dc.subject.otherHuman-AI Interaction-
dc.subject.otherLarge Language Models-
dc.titleECHO: Enhancing Conversational Explainable AI through Tool-Augmented Language Models-
dc.typeJournal Contribution-
local.bibliographicCitation.conferencedate2025, June 23-27-
local.bibliographicCitation.conferencenameThe 17th ACM SIGCHI Symposium on Engineering Interactive Computing Systems-
local.bibliographicCitation.conferenceplaceTrier, Germany-
dc.identifier.epage33-
dc.identifier.issue4-
dc.identifier.spage1-
dc.identifier.volume9-
local.format.pages33-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnrEICS014-
dc.identifier.doi10.1145/3734191-
local.provider.typeCrossRef-
local.uhasselt.internationalno-
item.accessRightsEmbargoed Access-
item.fulltextWith Fulltext-
item.contributorVANBRABANT, Sebe-
item.contributorEERLINGS, Gilles-
item.contributorROVELO RUIZ, Gustavo-
item.contributorVANACKEN, Davy-
item.fullcitationVANBRABANT, Sebe; EERLINGS, Gilles; ROVELO RUIZ, Gustavo & VANACKEN, Davy (2025) ECHO: Enhancing Conversational Explainable AI through Tool-Augmented Language Models. In: Proceedings of the Acm on Human-computer Interaction, 9 (4) , p. 1 -33 (Art N° EICS014).-
item.embargoEndDate2025-12-27-
crisitem.journal.issn2573-0142-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Author_Version_-_ECHO__Enhancing_Conversational_Explainable_AI_through_Tool-Augmented_Language_Models.pdf
  Until 2025-12-27
Peer-reviewed author version5.47 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.