Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/46357
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRASKING, Leen-
dc.contributor.authorVANBRABANT, Kenneth-
dc.contributor.authorVANGENEUGDEN, Maartje-
dc.contributor.authorVAN PEE, Thessa-
dc.contributor.authorCassee, Flemming R.-
dc.contributor.authorBOVE, Hannelore-
dc.contributor.authorDe Vusser, Katrien-
dc.contributor.authorPLUSQUIN, Michelle-
dc.contributor.authorNAWROT, Tim-
dc.date.accessioned2025-07-15T13:41:46Z-
dc.date.available2025-07-15T13:41:46Z-
dc.date.issued2025-
dc.date.submitted2025-06-23T08:03:54Z-
dc.identifier.urihttp://hdl.handle.net/1942/46357-
dc.description.abstractBackground Epidemiological and toxicological studies underscore the adverse health effects of combustion-derived particles, such as carbonaceous nanoparticles (CNPs), which translocate to various organs, including the kidneys. Given the kidneys play a crucial role in filtering toxins, CNP accumulation may pose a risk to renal function. We investigated CNP biodistribution in murine and human kidney tissue to assess potential impacts on kidney health. Methods In the controlled murine model, wild-type C57BL/6J mice were exposed to CNPs through whole-body exposure. Human kidney tissue was analyzed without prior knowledge of exposure history. CNPs in kidney tissue were detected using femtosecond-pulsed illumination and quantified via a peak-finding algorithm. Renal components – the glomerulus, proximal and distal tubules, and blood vessels – were visualized through immunofluorescence. Colocalization of CNPs with renal structures was quantified using the Just Another Colocalization Plugin. Structural differences were evaluated using Kruskal-Wallis tests. Results CNPs were detected in all investigated renal structures of both mouse and human kidneys, providing direct evidence of their translocation. The relative distribution was comparable between species, with no statistically significant differences in colocalization (q > 0.05). The percentages of CNPs in mice vs. humans colocalized with glomeruli (1.46 % vs. 1.91 %), proximal tubules (13.43 % vs. 16.10 %), distal tubules (2.72 % vs. 3.25 %), and blood vessels and capillaries (4.16 % vs. 5.21 %). Conclusions Proximal tubules exhibited the highest relative CNP accumulation in both species. This aligns with research linking environmental pollutants, such as black carbon, to decreased tubular kidney function, suggesting proximal tubule involvement in particle processing.-
dc.description.sponsorshipthe Special Research Fund (BOF) from Hasselt University the Research Foundation Flanders (FWO) the European Union’s Horizon 2020-
dc.language.isoen-
dc.publisherElsevier B.V.-
dc.subject.otherAir pollution-
dc.subject.otherFine particulate matter-
dc.subject.otherBlack carbon-
dc.subject.otherCarbonaceous nanoparticles-
dc.subject.otherKidney-
dc.subject.otherBiodistribution-
dc.subject.otherImmunofluorescence-
dc.titleRelative biodistribution and accumulation of carbonaceous nanoparticles inside the murine and human kidney-
dc.identifier.issue100790-
dc.identifier.volume19-
local.publisher.placethe Netherlands-
dc.relation.referencesNemmar, A., Hoet, P.M., Vanquickenborne, B., Dinsdale, D., Thomeer, M., Hoylaerts, M., et al., 2002. Passage of inhaled particles into the blood circulation in humans. Circulation 105 (4), 411–414. Van Berlo, D., Hullmann, M., Wessels, A., Scherbart, A., Cassee, F., Gerlofs-Nijland, M., et al., 2014. Investigation of the effects of short-term inhalation of carbon nanoparticles on brains and lungs of c57bl/6j and p47phox􀀀/􀀀mice. Neurotoxicology 43, 65–72. Upadhyay, S., Stoeger, T., George, L., Schladweiler, M.C., Kodavanti, U., Ganguly, K., et al., 2014. Ultrafine carbon particle mediated cardiovascular impairment of aged spontaneously hypertensive rats. Part. Fibre Toxicol. 11, 1–18. Andr´e, E., Stoeger, T., Takenaka, S., Bahnweg, M., Ritter, B., Karg, E., et al., 2006. Inhalation of ultrafine carbon particles triggers biphasic pro-inflammatory response in the mouse lung. Eur. Respir. J. 28 (2), 275–285. Saleh, Y., Antherieu, S., Dusautoir, R., Y Alleman, L., Sotty, J., De Sousa, C., et al., 2019. Exposure to atmospheric ultrafine particles induces severe lung inflammatory response and tissue remodeling in mice. Int. J. Environ. Res. Public Health 16 (7), 1210. Janssen, B.G., Saenen, N.D., Roels, H.A., Madhloum, N., Gyselaers, W., Lefebvre, W., et al., 2017. Fetal thyroid function, birth weight, and in utero exposure to fine particle air pollution: a birth cohort study. Environ. Health Perspect. 125 (4), 699–705. Zhu, X., Liu, Y., Chen, Y., Yao, C., Che, Z., Cao, J., 2015. Maternal exposure to fine particulate matter (PM 2.5) and pregnancy outcomes: a meta-analysis. Environmental Science and Pollution Research 22, 3383–3396. Janssen, N.A., Gerlofs-Nijland, M.E., Lanki, T., Salonen, R.O., Cassee, F., Hoek, G., et al., 2012. Health Effects of Black Carbon: World Health Organization. Regional Office for Europe. Janssen, N.A., Hoek, G., Simic-Lawson, M., Fischer, P., Van Bree, L., Ten Brink, H., et al., 2011. Black carbon as an additional indicator of the adverse health effects of airborne particles compared with PM10 and PM2. 5. Environ. Health Perspect. 119 (12), 1691–1699. Bov´e, H., Bongaerts, E., Slenders, E., Bijnens, E.M., Saenen, N.D., Gyselaers, W., et al., 2019. Ambient black carbon particles reach the fetal side of human placenta. Nat. Commun. 10 (1), 3866. Vanbrabant, K., Van Dam, D., Bongaerts, E., Vermeiren, Y., Bov´e, H., Hellings, N., et al., 2024. Accumulation of ambient black carbon particles within key memory-related brain regions. JAMA Netw. Open 7 (4) e245678-e. LeFevre, M.E., Green, F.H., Joel, D.D., Laqueur, W., 1982. Frequency of black pigment in livers and spleens of coal workers: correlation with pulmonary pathology and occupational information. Hum. Pathol. 13 (12), 1121–1126. Bongaerts, E., Nawrot, T.S., Wang, C., Ameloot, M., Bov´e, H., Roeffaers, M.B., et al., 2023. Placental-fetal distribution of carbon particles in a pregnant rabbit model after repeated exposure to diluted diesel engine exhaust. Part. Fibre Toxicol. 20 (1), 20. Rasking, L., Koshy, P., Bongaerts, E., Bov´e, H., Ameloot, M., Plusquin, M., et al., 2023. Ambient black carbon reaches the kidneys. Environ. Int. 177, 107997. Pizzorno, J., 2015. The kidney dysfunction epidemic, part 1: causes. Integrative Medicine: A Clinician’s Journal 14 (6), 8. Honda, R., Swaddiwudhipong, W., Nishijo, M., Mahasakpan, P., Teeyakasem, W., Ruangyuttikarn, W., et al., 2010. Cadmium induced renal dysfunction among residents of rice farming area downstream from a zinc-mineralized belt in Thailand. Toxicol. Lett. 198 (1), 26–32. Johri, N., Jacquillet, G., Unwin, R., 2010. Heavy metal poisoning: the effects of cadmium on the kidney. Biometals 23, 783–792. Ma, Y., Yue, C., Sun, Q., Wang, Y., Gong, Z., Zhang, K., et al., 2023. Cadmium exposure exacerbates kidney damage by inhibiting autophagy in diabetic rats. Ecotoxicol. Environ. Saf. 267, 115674. Thomas, L.D., Hodgson, S., Nieuwenhuijsen, M., Jarup, L., 2009. Early kidney damage in a population exposed to cadmium and other heavy metals. Environ. Health Perspect. 117 (2), 181–184. Saenen, N.D., Bov´e, H., Steuwe, C., Roeffaers, M.B., Provost, E.B., Lefebvre, W., et al., 2017. Children’s urinary environmental carbon load. A novel marker reflecting residential ambient air pollution exposure? Am. J. Respir. Crit. Care Med. 196 (7), 873–881. Vanbrabant, K., Rasking, L., Vangeneugden, M., Bov´e, H., Ameloot, M., Vanmierlo, T., et al., 2024. Impact on murine neurodevelopment of early-life exposure to airborne ultrafine carbon nanoparticles. Part. Fibre Toxicol. 21, 51. Savadkoohi, M., Pandolfi, M., Reche, C., Niemi, J.V., Mooibroek, D., Titos, G., et al., 2023. The variability of mass concentrations and source apportionment analysis of equivalent black carbon across urban Europe. Environment international. 178, 108081. Bov´e, H., Steuwe, C., Fron, E., Slenders, E., D’Haen, J., Fujita, Y., et al., 2016. Biocompatible label-free detection of carbon black particles by femtosecond pulsed laser microscopy. Nano Lett. 16 (5), 3173–3178. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., et al., 2012. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9 (7), 676–682. Bongaerts, E., Aengenheister, L., Dugershaw, B.B., Manser, P., Roeffaers, M.B., Ameloot, M., et al., 2021. Label-free detection of uptake, accumulation, and translocation of diesel exhaust particles in ex vivo perfused human placenta. J. Nanobiotechnol. 19, 1–13. Rasking, L., Van Pee, T., Vangeneugden, M., Renaers, E., Wang, C., Penders, J., et al., 2024. Newborn glomerular function and gestational particulate air pollution. EBio Med 107. Finco, DR., 1997. Kidney function. Clinical Biochemistry of Domestic Animals. Elsevier, pp. 441–484. Gualtieri, M., Øvrevik, J., Mollerup, S., Asare, N., Longhin, E., Dahlman, H-J, et al., 2011. Airborne urban particles (Milan winter-PM2. 5) cause mitotic arrest and cell death: effects on DNA, mitochondria, AhR binding and spindle organization. Mutation Res./ Fundam. Molec. Mechanisms Mutag. 713 (1-2), 18–31. Grevendonk, L., Janssen, B.G., Vanpoucke, C., Lefebvre, W., Hoxha, M., Bollati, V., et al., 2016. Mitochondrial oxidative DNA damage and exposure to particulate air pollution in mother-newborn pairs. Environ. Health 15, 1–8. Dalal R, Bruss ZS, Sehdev JS. Physiology, renal blood flow and filtration. 2018. Watson, A.Y., Valberg, PA., 2001. Carbon black and soot: two different substances. AIHAJ-Am. Indust. Hygiene Associat. 62 (2), 218–228. Bov´e, H., Steuwe, C., Fron, E., Slenders, E., D’Haen, J., Fujita, Y., et al., 2016. Biocompatible label-free detection of carbon black particles by femtosecond pulsed laser microscopy. Nano Lett. 16 (5), 3173–3178. Keller, C., Odden, M., Fried, L., Newman, A., Angleman, S., Green, C., et al., 2007. Kidney function and markers of inflammation in elderly persons without chronic kidney disease: the health, aging, and body composition study. Kidney Int. 71 (3), 239–244. Puthumana, J., Thiessen-Philbrook, H., Xu, L., Coca, S.G., Garg, A.X., Himmelfarb, J., et al., 2021. Biomarkers of inflammation and repair in kidney disease progression. J. Clin. Invest. 131 (3). Mansour, S.G., Puthumana, J., Coca, S.G., Gentry, M., Parikh, CR., 2017. Biomarkers for the detection of renal fibrosis and prediction of renal outcomes: a systematic review. BMC nephrology 18, 1–13. Prozialeck, W.C., Edwards, JR., 2010. Early biomarkers of cadmium exposure and nephrotoxicity. Biometals 23, 793–809. Miettinen, J., Helin, H., Pakarinen, M., Jalanko, H., Lauronen, J., 2014. Histopathology and biomarkers in prediction of renal function in children after kidney transplantation. Transpl. Immunol. 31 (2), 105–111. Chang, S-H, Merzkani, M., Murad, H., Wang, M., Bowe, B., Lentine, K.L., et al., 2021. Association of ambient fine particulate matter air pollution with kidney transplant outcomes. JAMA Netw. Open 4 (10) e2128190-e.-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.type.programmeH2020-
local.relation.h2020No. 814978 (TUBE)-
dc.identifier.doihttps://doi.org/10.1016/j.hazadv.2025.100790-
local.provider.typePdf-
item.fullcitationRASKING, Leen; VANBRABANT, Kenneth; VANGENEUGDEN, Maartje; VAN PEE, Thessa; Cassee, Flemming R.; BOVE, Hannelore; De Vusser, Katrien; PLUSQUIN, Michelle & NAWROT, Tim (2025) Relative biodistribution and accumulation of carbonaceous nanoparticles inside the murine and human kidney.-
item.fulltextWith Fulltext-
item.accessRightsClosed Access-
item.contributorRASKING, Leen-
item.contributorVANBRABANT, Kenneth-
item.contributorVANGENEUGDEN, Maartje-
item.contributorVAN PEE, Thessa-
item.contributorCassee, Flemming R.-
item.contributorBOVE, Hannelore-
item.contributorDe Vusser, Katrien-
item.contributorPLUSQUIN, Michelle-
item.contributorNAWROT, Tim-
crisitem.journal.issn2772-4166-
crisitem.journal.eissn2772-4166-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.