Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/46361
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Jans, Mieke | - |
dc.contributor.advisor | Martin | - |
dc.contributor.author | PRADHAN, Shameer | - |
dc.contributor.author | JANS, Mieke | - |
dc.contributor.author | MARTIN, Niels | - |
dc.date.accessioned | 2025-07-22T11:36:31Z | - |
dc.date.available | 2025-07-22T11:36:31Z | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-07-02T19:39:28Z | - |
dc.identifier.citation | Enterprise, Business-Process and Information Systems Modeling, p. 107 -122 | - |
dc.identifier.isbn | 978-3-031-95397-2 | - |
dc.identifier.issn | 1865-1348 | - |
dc.identifier.uri | http://hdl.handle.net/1942/46361 | - |
dc.description.abstract | Identifying relevant tables in databases to build event logs is typically a manual, error-prone task in process mining. This paper introduces TabMine, a semi-automated algorithm that identifies these tables by leveraging both the network structure of tables and their natural language descriptions. By integrating process-related business documents with table metadata, TabMine employs machine learning techniques, specifically community detection and natural language processing, to align table communities with the corresponding documents. This enables analysts to build event logs for process mining from a targeted list of tables without prior knowledge of the specific database or ERP system. | - |
dc.language.iso | en | - |
dc.relation.ispartofseries | Lecture Notes in Business Information Processing | - |
dc.rights | The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 R. Guizzardi et al. (Eds.): BPMDS 2025/EMMSAD 2025, LNBIP 558, pp. 107–122, 2025. https://doi.org/10.1007/978-3-031-95397-2_7 | - |
dc.subject.other | data extraction | - |
dc.subject.other | data preparation | - |
dc.subject.other | event log-building | - |
dc.subject.other | process mining | - |
dc.subject.other | table identification | - |
dc.title | Which Tables are Mine(able)? | - |
dc.type | Proceedings Paper | - |
local.bibliographicCitation.conferencedate | 2025, June 16-20 | - |
local.bibliographicCitation.conferencename | BPMDS | - |
local.bibliographicCitation.conferenceplace | Vienna, Austria | - |
dc.identifier.epage | 122 | - |
dc.identifier.spage | 107 | - |
dc.identifier.volume | 558 | - |
local.bibliographicCitation.jcat | C1 | - |
local.type.refereed | Refereed | - |
local.type.specified | Proceedings Paper | - |
dc.identifier.doi | 10.1007/978-3-031-95397-2 | - |
local.provider.type | - | |
local.bibliographicCitation.btitle | Enterprise, Business-Process and Information Systems Modeling | - |
local.uhasselt.international | yes | - |
item.fullcitation | PRADHAN, Shameer; JANS, Mieke & MARTIN, Niels (2025) Which Tables are Mine(able)?. In: Enterprise, Business-Process and Information Systems Modeling, p. 107 -122. | - |
item.contributor | PRADHAN, Shameer | - |
item.contributor | JANS, Mieke | - |
item.contributor | MARTIN, Niels | - |
item.accessRights | Open Access | - |
item.fulltext | With Fulltext | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
978-3-031-95397-2.pdf | Published version | 913.21 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.