Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/46373
Full metadata record
DC FieldValueLanguage
dc.contributor.authorvan Daalen, Florian-
dc.contributor.authorJacquemin, Marine-
dc.contributor.authorvan Soest, Johan-
dc.contributor.authorStahl, Nina-
dc.contributor.authorTownend, David-
dc.contributor.authorDekker, Andre-
dc.contributor.authorBERMEJO DELGADO, Inigo-
dc.date.accessioned2025-07-22T14:01:40Z-
dc.date.available2025-07-22T14:01:40Z-
dc.date.issued2025-
dc.date.submitted2025-06-27T10:38:19Z-
dc.identifier.citationEthics and information technology, 27 (3) (Art N° 32)-
dc.identifier.urihttp://hdl.handle.net/1942/46373-
dc.description.abstractAccess to large datasets, the rise of the Internet of Things (IoT) and the ease of collecting personal data, have led to significant breakthroughs in machine learning. However, they have also raised new concerns about privacy data protection. Controversies like the Facebook-Cambridge Analytica scandal highlight unethical practices in today's digital landscape. Historical privacy incidents have led to the development of technical and legal solutions to protect data subjects' right to privacy. However, within machine learning, these problems have largely been approached from a mathematical point of view, ignoring the larger context in which privacy is relevant. This technical approach has benefited data-controllers and failed to protect individuals adequately. Moreover, it has aligned with Big Tech organizations' interests and allowed them to further push the discussion in a direction that is favorable to their interests. This paper reflects on current privacy approaches in machine learning and explores how various big organizations guide the public discourse, and how this harms data subjects. It also critiques the current data protection regulations, as they allow superficial compliance without addressing deeper ethical issues. Finally, it argues that redefining privacy to focus on harm to data subjects rather than on data breaches would benefit data subjects as well as society at large.-
dc.description.sponsorshipThis research received funding from the Netherlands Organization for Scientifc Research (NWO): Coronary ARtery disease: Risk estimations and Interventions for prevention and EaRly detection (CARRIER): project nr. 628.011.212.-
dc.language.isoen-
dc.publisherSPRINGER-
dc.rightsThe Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.-
dc.subject.otherPrivacy-
dc.subject.otherEthics-
dc.subject.otherMachine learning-
dc.subject.otherPrivacy preserving-
dc.titleA critique of current approaches to privacy in machine learning-
dc.typeJournal Contribution-
dc.identifier.issue3-
dc.identifier.volume27-
local.format.pages14-
local.bibliographicCitation.jcatA1-
dc.description.notesvan Daalen, F (corresponding author), Maastricht Univ, Radiat Oncol MAASTRO GROW Sch Oncol & Reprod, Med Ctr, Maastricht, Netherlands.; van Daalen, F (corresponding author), Maastricht Univ, Care & Publ Hlth Res Inst CAPHRI, Dept Hlth Promot, Maastricht, Netherlands.-
dc.description.notesf.vandaalen@maastrichtuniversity.nl; marine.jacquemin@maastro.nl;-
dc.description.notesj.vansoest@maastrichtuniversity.nl; n.stahl@maastrichtuniversity.nl;-
dc.description.notesd.townend@maastrichtuniversity.nl; andre.dekker@maastro.nl;-
dc.description.notesi.bermejo@maastrichtuniversity.nl-
local.publisher.placeVAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr32-
dc.identifier.doi10.1007/s10676-025-09843-4-
dc.identifier.pmid40547343-
dc.identifier.isi001512315600001-
local.provider.typewosris-
local.description.affiliation[van Daalen, Florian; Jacquemin, Marine; van Soest, Johan; Dekker, Andre; Bermejo, Inigo] Maastricht Univ, Radiat Oncol MAASTRO GROW Sch Oncol & Reprod, Med Ctr, Maastricht, Netherlands.-
local.description.affiliation[van Daalen, Florian] Maastricht Univ, Care & Publ Hlth Res Inst CAPHRI, Dept Hlth Promot, Maastricht, Netherlands.-
local.description.affiliation[Townend, David] Univ London, City Law Sch, London, England.-
local.description.affiliation[Bermejo, Inigo] Hasselt Univ, Data Sci Inst, Hasselt, Belgium.-
local.description.affiliation[van Soest, Johan] Maastricht Univ, Fac Sci & Engn, Brightlands Inst Smart Soc BISS, Maastricht, Netherlands.-
local.description.affiliation[Stahl, Nina; Townend, David] Univ Maastricht, Fac Hlth, Dept Hlth Eth & Soc HES, Maastricht, Netherlands.-
local.uhasselt.internationalyes-
item.fullcitationvan Daalen, Florian; Jacquemin, Marine; van Soest, Johan; Stahl, Nina; Townend, David; Dekker, Andre & BERMEJO DELGADO, Inigo (2025) A critique of current approaches to privacy in machine learning. In: Ethics and information technology, 27 (3) (Art N° 32).-
item.contributorvan Daalen, Florian-
item.contributorJacquemin, Marine-
item.contributorvan Soest, Johan-
item.contributorStahl, Nina-
item.contributorTownend, David-
item.contributorDekker, Andre-
item.contributorBERMEJO DELGADO, Inigo-
item.accessRightsOpen Access-
item.fulltextWith Fulltext-
crisitem.journal.issn1388-1957-
crisitem.journal.eissn1572-8439-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
A critique of current approaches to privacy in machine learning.pdfPublished version757.5 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.