Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/46394
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFREDERIX, Siebe-
dc.contributor.authorGiannini, Samuele-
dc.contributor.authorVAN LANDEGHEM, Melissa-
dc.contributor.authorBeljonne, David-
dc.contributor.authorVANDEWAL, Koen-
dc.date.accessioned2025-07-23T13:11:27Z-
dc.date.available2025-07-23T13:11:27Z-
dc.date.issued2025-
dc.date.submitted2025-07-10T13:07:28Z-
dc.identifier.citationMaterials Horizons,-
dc.identifier.urihttp://hdl.handle.net/1942/46394-
dc.description.abstractOrganic solar cells have seen significant advancements through the use of non-fullerene acceptors, yet understanding the impact of molecular design on energetic disorder remains critical for optimizing material performance. In this work, we investigate three methodologies for quantifying static and dynamic excitonic disorder by analysing the temperature dependence of spectral features in thin film absorption and photoluminescence spectra. Our results demonstrate that fitting the temperature dependence of the first emission peak energy is the most reliable approach for assessing static disorder, while linewidth fitting of absorption spectra is best suited for quantifying dynamic disorder. Comparative case studies reveal that linear n-octyl side chains (e.g., in O-IDTBR and IDIC-4Cl) improve aggregation and induce the lowest static disorder, whereas bulkier side chains (e.g., 2-ethylhexyl and phenylhexyl) result in static disorder parameters which are approximately 50% larger in magnitude. For materials exhibiting strong aggregation, such as Y6, the limitations of current models underscore the need for caution when interpreting disorder metrics. These findings highlight the importance of side chain engineering in controlling the excitonic energetic landscape and provide guidance for the accurate assessment of the related disorder parameters in organic semiconductors.-
dc.description.sponsorshipThis work was funded via the European Research Council (ERC, grant agreement 864625). S. G. thanks the financial support from ICSC– Centro Nazionale di Ricerca in High Performance Computing, Big Data and Quantum Computing, funded by European Union– NextGenerationEU– PNRR, Missione 4 Componente 2 Investimento 1.4. M. V. acknowledges funding from the Research Foundation– Flanders (FWO) through Postdoctoral Fellowship Number 1270123N.-
dc.language.isoen-
dc.publisherRoyal Society of Chemistry-
dc.rightsThe Royal Society of Chemistry 2025-
dc.titleExtracting disorder parameters from optical spectra of non-fullerene acceptors-
dc.typeJournal Contribution-
local.format.pages11-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.statusEarly view-
local.type.programmeH2020-
local.relation.h2020864625-
dc.identifier.doi10.1039/D5MH00547G-
dc.identifier.pmid40621790-
dc.identifier.isi001523292800001-
local.provider.typeCrossRef-
local.uhasselt.internationalyes-
item.accessRightsEmbargoed Access-
item.contributorFREDERIX, Siebe-
item.contributorGiannini, Samuele-
item.contributorVAN LANDEGHEM, Melissa-
item.contributorBeljonne, David-
item.contributorVANDEWAL, Koen-
item.fullcitationFREDERIX, Siebe; Giannini, Samuele; VAN LANDEGHEM, Melissa; Beljonne, David & VANDEWAL, Koen (2025) Extracting disorder parameters from optical spectra of non-fullerene acceptors. In: Materials Horizons,.-
item.fulltextWith Fulltext-
item.embargoEndDate2026-02-28-
crisitem.journal.issn2051-6347-
crisitem.journal.eissn2051-6355-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
d5mh00547g.pdf
  Restricted Access
Early view1.93 MBAdobe PDFView/Open    Request a copy
ExtractingDisorderParameters_authorVersion.pdf
  Until 2026-02-28
Peer-reviewed author version1.2 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.