Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/47167
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorVALKENBORG, Dirk
dc.contributor.advisorROUSSEAU, Axel-Jan
dc.contributor.authorNangosyah, Tom
dc.date.accessioned2025-09-08T12:27:14Z-
dc.date.available2025-09-08T12:27:14Z-
dc.date.issued2025
dc.identifier.urihttp://hdl.handle.net/1942/47167-
dc.format.mimetypeApplication/pdf
dc.languageen
dc.publishertUL
dc.titleExploring the Diagnostic and Prognostic Potential of OCT Data in Multiple Sclerosis Using Machine Learning Techniques
dc.typeTheses and Dissertations
local.bibliographicCitation.jcatT2
dc.description.notesMaster of Statistics and Data Science-Bioinformatics
local.type.specifiedMaster thesis
item.fullcitationNangosyah, Tom (2025) Exploring the Diagnostic and Prognostic Potential of OCT Data in Multiple Sclerosis Using Machine Learning Techniques.-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
item.contributorNangosyah, Tom-
Appears in Collections:Master theses
Files in This Item:
File Description SizeFormat 
3d5bf157-715d-4073-bb44-ade080ef535e.pdf2.56 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.