Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/47414
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBAMPS, Bram-
dc.contributor.authorMerabtene, Mahdi-
dc.contributor.authorIlhan, Ilknur-
dc.date.accessioned2025-09-30T13:25:41Z-
dc.date.available2025-09-30T13:25:41Z-
dc.date.issued2025-
dc.date.submitted2025-09-29T07:21:08Z-
dc.identifier.citationLee, Dong Sun (Ed.). Encyclopedia of Food Packaging, Elsevier,-
dc.identifier.isbn9780081005965-
dc.identifier.urihttp://hdl.handle.net/1942/47414-
dc.description.abstractThis chapter examines pouch forming mechanisms and seal technologies for flexible packaging applications. It discusses key stages in vertical and horizontal form-fill-seal (FFS) systems. The principles of heat-conductive sealing and ultrasonic sealing are compared, and other seal technologies are briefly outlined. The concept of caulkability is introduced as a critical factor in achieving seal integrity and reliable seal-through performance. An overview of thermoplastic seal polymers, barrier materials, substrates and mono-material solutions is provided, along with considerations for recycled content and its impact on seal properties. The chapter concludes by addressing recent advancements in seal equipment and process adaptations that enable high seal quality while supporting circular packaging systems.-
dc.language.isoen-
dc.publisherElsevier-
dc.rights2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies-
dc.titleFlexible Package Manufacturing – Pouch Formation and Sealing-
dc.typeBook Section-
local.bibliographicCitation.authorsLee, Dong Sun-
dc.identifier.volume117-
local.bibliographicCitation.jcatB2-
dc.relation.referencesArnauts, J., Halle, R.W., Rohse, N., Mesnil, P., 2000. Seal through contamination performance of metallocene plastomers. In: Polymers Laminations and Coatings Conference, Vol. 2, pp. 669–686. Aslan, O., Çelebi, D., 2024. Investigation of the effects of using recycled raw materials on the mechanical properties of Pe film produced by blown film extrusion technology. Orclever Proceedings of Research and Development 5 (1), 629–646. Bach, S., 2013. Introduction and overview – sealing technologies. In: Proceedings of the IPI/VVD Symposium 2013 Conference. Schaffhausen. Bach, S., Thürling, K., Majschak, J.-P., 2011. Ultrasonic sealing of flexible packaging films – principle and characteristics of an alternative sealing method. Packaging Technology and Science 25 (4), 233–248. https://doi.org/10.1002/pts.972. Bamps, B., 2022. Study of optimal heat seal performance of flexible food packaging, using material properties, machine and processing parameters in a design of experiments approach. PhD thesis. Hasselt University, Diepenbeek. Faculty of Industrial Engineering Sciences. Bamps, B., Buntinx, M., Peeters, R., 2023. Seal materials in flexible plastic food packaging: A review. Packaging Technology and Science 36, 507–532. https://doi.org/10.1002/pts.2732. Bamps, B., D'huys, K., Schreib, I., et al., 2019. Evaluation and optimization of seal behaviour through solid contamination of heat-sealed films. Packaging Technology and Science 32 (7), 335–344. https://doi.org/10.1002/pts.2442. Bamps, B., Guimaraes, R.M.M., Duijsters, G., et al., 2022. Characterizing mechanical, heat seal, and gas barrier performance of biodegradable films to determine food packaging applications. Polymers (Basel) 14 (13), 2569. https://doi.org/10.3390/polym14132569. Bamps, B., Samyn, P., Rosenow, P., et al., 2024. A study into the hot tack and cooled seal performance of emerging coated papers for primary flexible food packaging. Packaging Technology and Science 37 (9), 885–899. https://doi.org/10.1002/pts.2828. Bosch Packaging Technology Inc., 2014. Guide to Vertical Form-Fill-Seal Baggers. Brown, N., Kerr, D., Parkin, R.M., Jackson, M.R., Shi, F., 2012. Non-contact laser sealing of thin polyester food packaging films. Optics and Lasers in Engineering 50 (10), 1466–1473. https://doi.org/10.1016/j.optlaseng.2012.04.001. Chu, Y., Popovich, C., Wang, Y., 2023. Heat sealable regenerated cellulose films enabled by zein coating for sustainable food packaging. Composites Part C: Open Access 12, 100390. https://doi.org/10.1016/j.jcomc.2023.100390. D’huys, K., Saeys, W., De Ketelaere, B., 2016. Active infrared thermography for seal contamination detection in heat-sealed food packaging. Journal of Imaging 2 (4), 33. https://doi. org/10.3390/jimaging2040033. Darby, D., 2011. Sealing seminar: Seal energy processes. In: Proceedings of the IPI International Packaging Institute Conference. Schaffhausen. De Garavilla, J.R., 1995. Ionomer, acid copolymer, and metallocene polyethylene resins: a comparative assessment of sealant performance. TAPPI Journal 78 (6), 191–203. Delle Cese, F., Saha, K., Roy, S., Singh, J., 2017. Effect of liquid contamination on hermeticity and seal strength of flexible pouches with LLDPE sealant. Journal of Applied Packaging Research 9 (1), 32–59. Dudbridge, M., 2016. Handbook of Seal Integrity in the Food Industry. John Wiley & Sons, Ltd, Chichester ISBN: 9781118904602. Eriksen, M.K., Christiansen, J.D., Daugaard, A.E., Astrup, T.F., 2019. Closing the loop for PET, PE and PP waste from households: Influence of material properties and product design for plastic recycling. Waste Management 96, 75–85. Garofalo, E., Claro, M., Scarfato, P., Di Maio, L., Incarnato, L., 2015. Upgrading of recycled plastics obtained from flexible packaging waste by adding nanosilicates. In: Proceedings of the AIP Conference, vol. 1695, No. 1. AIP Publishing. Garofalo, E., Di Maio, L., Scarfato, P., et al., 2021. Nanosilicates in compatibilized mixed recycled polyolefins: Rheological behavior and film production in a circular approach. Nanomaterials 11 (8), 2128. Gellerich, P.A., Majschak, J.-P., 2023. Pareto-based design of experiments for identifying and comparing optimum sealing parameters of heat sealing applications in packaging machines. TAPPI Journal 22 (6), 383–397. https://doi.org/10.32964/TJ22.6.383. Grewell, D., Benatar, A., 2007. Welding of plastics: Fundamentals and new developments. International Polymer Processing 22 (1), 43–60. https://doi.org/10.3139/217.0051. Guerritore, M., Olivieri, F., Castaldo, R., et al., 2022. Recyclable-by-design mono-material flexible packaging with high barrier properties realized through graphene hybrid coatings. Resources, Conservation and Recycling 179, 106126. Guleria, D., Edeleva, M., Cardon, L., 2024. Impact of molecular architecture and draw ratio on enhancement of targeted mechanical properties of machine direction oriented polyethylene films produced after blown film extrusion. Journal of Elastomers & Plastics 41 (1), 35–67. https://doi.org/10.1177/87560879241293392. Hauptmann, M., Bär, W., Schmidtchen, L., et al., 2021a. The sealing behavior of new mono-polyolefin and paper-based film laminates in the context of bag form-fill-seal machines. Packaging Technology and Science 34 (2), 117–126. Hauptmann, M., Bär, W., Schmidtchen, L., et al., 2021b. The effect of flexible sealing jaws on the tightness of pouches made from mono-polyolefin films and functional papers. Packaging Technology and Science 34, 175–186. https://doi.org/10.1002/pts.2552. Hishinuma, K., 2009. Textbook of Heat Sealing Technology and Engineering For Packaging, first ed. DEStech Publications, Pennsylvania. Hughes, H.A., 2007. 22 Food Packaging Machinery. Ilhan, I., 2023. Understanding seal integrity: Sealing and closing of flexible packaging. PhD thesis. University of Twente. Ilhan, I., ten Klooster, R., Gibson, I., 2021a. Effects of process parameters and solid particle contaminants on the seal strength of low-density polyethylene-based flexible food packaging films. Packaging Technology and Science 34 (7), 413–421. https://doi.org/10.1002/pts.2567. Ilhan, I., Turan, D., Gibson, I., ten Klooster, R., 2021b. Understanding the factors affecting the seal integrity in heat sealed flexible food packages: A review. Packaging Technology and Science 34, 321–337. https://doi.org/10.1002/pts.2564. Kanani Aghkand, Z., 2021. Effect of sealant structure and sealing condition on heat sealing performance of polyethylene films. PhD thesis. Polytechnique Montréal. Available at: https://publications.polymtl.ca/5620/. Kossinna, J., Meyer, A., 2010. Helium leak testing of packages for oral drug products. European Journal of Pharmaceutics and Biopharmaceutics 75 (2), 297–303. https://doi.org/ 10.1016/j.ejpb.2010.03.006. Lucas, E., Ilhan, I., Ten Klooster, R., 2023. Developing a design method and tool for producing customizable forming shoulders. In: Proceedings of the 31st IAPRI Member Conference on Packaging (Mumbai 2023), pp. 251–263. Lin, C.K.S., Oehm, L., Majschak, J., 2020. Innovative focused ultrasound-based sealing method of flexible packaging films—Principles and characteristics. Packaging Technology and Science 33, 397–405. https://doi.org/10.1002/pts.2510. Lim, W.S., Ock, S.Y., Park, G.D., Lee, I.W., Lee, M.H., Park, H.J., 2020. Heat-sealing property of cassava starch film plasticized with glycerol and sorbitol. Food Packaging and Shelf Life 26, 100556. Matthews, J., Hicks, B.J., Mullineux, G., Goodwin, J., Burke, A., 2011. Modelling the material flow and web tension in the vertical form–fill–seal packaging process. Packaging Technology and Science 24, 435–450. https://doi.org/10.1002/pts.949. Merabtene, M., 2020. Evaluation and optimization of a vertical form, fill and seal production machine for flexible packaging papers [master’s thesis]. Lappeenranta, Finland: Lappeenranta-Lahti University of Technology LUT. Merabtene, M., Pesonen, A., Tanninen, P., Varis, J., Leminen, V., 2024a. Novel forming shoulder for coated paper-based materials with improved convertibility and minimum wrinkles for use in vertical form, fill and seal machines. Packaging Technology and Science 38 (2), 131–143. https://doi.org/10.1002/pts.2862. Merabtene, M., Tanninen, P., Pesonen, A., et al., 2024b. Evaluation of frictional influence and thermal analysis of flexible paper-based materials used in the vertical form–fill–seal process: An experimental study. Packaging Technology and Science 37, 655–665. https://doi.org/10.1002/pts.2818. Merabtene, M., Tanninen, P., Varis, J., Leminen, V., 2022. Heat sealing evaluation and runnability issues of flexible paper materials in a vertical form fill seal packaging machine. BioResources 17 (1), 223–242. https://doi.org/10.15376/biores.17.1.223-242. Merabtene, M., Tanninen, P., Wolf, J., et al., 2023. Heat-sealing and microscopic evaluation of paper-based coated materials using various seal bar geometries in vertical form fill seal machine. Packaging Technology and Science 36, 667–679. https://doi.org/10.1002/pts.2735. Mihindukulasuriya, S., Lim, L.T., 2012. Effects of liquid contaminants on heat seal strength of low-density polyethylene film. Packaging Technology and Science 25 (5), 271–284. https://doi.org/10.1002/pts.978. Mohan, H.K.S.V., Toh, C.H., Malcolm, A.A., 2021. Non-destructive evaluation of flexible sachet seal integrity using a capacitive proximity sensor. In: Proceedings of the 2021 IEEE Industrial Electronics and Applications Conference (IEACon). https://doi.org/10.1109/IEACon51066.2021.9654718. Morita, Y., Dobroiu, A., Otani, C., Kawase, K., 2005. A real-time inspection system using a terahertz technique to detect microleak defects in the seal of flexible plastic packages. Journal of Food Protection 68 (4), 833–837. https://doi.org/10.4315/0362-028X-68.4.833. Morris, B.A., 2024. A perspective on additives for flexible packaging. Journal of Vinyl and Additive Technology 30 (6), 1359–1371. Morris, B., 2017. The Science and Technology of Flexible Packaging: Multilayer Films From Resin and Process to End Use. Elsevier, Amsterdam pp. 69–119 & pp. 181–257. Morris, B.A., 2017b. Packaging equipment. The Science and Technology of Flexible Packaging. Elsevier, pp. 51–66. https://doi.org/10.1016/B978-0-323-24273-8.00003-4. Ozguler, A., Morris, S.A., O’Brien, W., 1999. Evaluation of defects in the seal region of food packages using the ultrasonic contrast descriptor, ΔBAI. Packaging Technology and Science 12 (4), 161–170. https://doi.org/10.1002/(SICI)1099-1522(199907/08)12:4<161::AID-PTS464>3.0.CO;2-C. Pan, J., Yang, Z., Yap, S.H.K., Zhang, X., Xu, Z., Li, Y., Luo, Y., Zamburg, E., Liu, E.-X., Tham, C.-K., Thean, A.V.-Y., 2022. Non-destructive online seal integrity inspection utilizing autoencoder-based electrical capacitance tomography for product packaging assurance. Food Packaging and Shelf Life 33, 100919. 10.1016/j.fpsl.2022.100919. RecyClass, 2015. RecyClass, design for recycling guidelines: Natural PE flexible films for household and commercial packaging (accessed 23.06.25). Regulation (EC) No 1935/2004, 2021. Available at: https://eur-lex.europa.eu/eli/reg/2004/1935/2021-03-27(accessed 8.05.25). Regulation (EU) 2022/1616, 2022. Available at: Regulation – 2022/1616 – EN – EUR-Lex (accessed 8.05.25) Regulation (EU) 2025/40, 2024. Available at: Regulation – EU – 2025/40 – EN – EUR-Lex (accessed 8.05.25) Sadeghi, A., Ajji, A. and Saffar, A., 2025. Innovative home compostable heat sealable coating by modified starch for paper-based flexible packaging. ChemRxiv [preprint]. https:// doi.org/10.26434/chemrxiv-2025-shs8r. Sadegi, F., Ajji, A., 2014. Application of single site catalyst metallocene polyethylenes in extruded films: Effect of molecular structure on sealability, flexural cracking and mechanical properties. Canadian Journal of Chemical Engineering 92 (7), 1181–1188. https://doi.org/10.1002/cjce.21964. Saha, N.C., Ghosh, A.K., Garg, M., Sadhu, S.D., 2022. Food Packaging. Springer Nature Singapore, Singapore. https://doi.org/10.1007/978-981-16-4233-3. Sanatron LLC, n.d. Dry and wet vacuum leak quality testing of sachets filled with powder or liquid. [Online] Available at: https://www.sanatron.com/articles/leak-testing-methods/ dry-and-wet-vacuum-leak-quality-testing-of-sachets-filled-with-powder-or-liquid.php(accessed 11.04.25). Scarabottolo, N., Fedel, M., Cocola, L., Poletto, L., 2020. In-line inspecting device for leak detection from gas-filled food packages. Sensing for Agriculture and Food Quality and Safety XII. https://doi.org/10.1117/12.2557784. Selke, S.E.M., Culter, J.D., 2016. Flexible packaging. Plastics Packaging. Carl Hanser Verlag GmbH & Co. KG, München, pp. 257–266. https://doi.org/10.3139/9783446437197.009. Theller, H.W., 1989. Heatsealability of flexible web materials in hot-bar sealing applications. Journal of Plastic Film & Sheeting 5, 66–93. https://doi.org/10.1177/ 875608798900500107. Velásquez, E., López de Dicastillo, C., Patiño, et al., 2023. Feasibility of valorization of post-consumer recycled flexible polypropylene by adding fumed nanosilica for its potential use in food packaging toward sustainability. Polymers 15 (5), 1081. Viking Mastek Packaging, 2018. First-Time Buyer’s Guidebook. Is Packaging Automation Right for You? Introduction to Flexible Packaging Machines. Viking Masek Packaginghttps://vikingmasek.com/downloads/first-time-buyer-guidebook-download?submissionGuid=62480459-aa48-496f-8491-825e09f8e76c(accessed July 9.07.25). Vogel, J., Grewell, D., Kessler, M.R., Drummer, D., Menacher, M., 2011. Ultrasonic and impulse welding of polylactic acid films. Polymer Engineering and Science 51 (6), 1059–1067. https://doi.org/10.1002/pen.21919. Waterham, R., Ilhan, I., ten Klooster, R., 2024. Creating easy peel longitudinal seals in a mono-PP film without additives in the sealant layer using ultrasonic sealing on a HFFS system. Presented at the 24th IAPRI World Packaging Conference 2024. Wolf, J., Jukarainen, J., Hauptmann, M., 2025. Effects of material and sealing process parameters on the tightness of the layer transition area of pouch packaging made from functional papers. Packaging Technology and Science 38 (6), 473–486. https://doi.org/10.1002/pts.2896. Ying, H., Qi, L., Malotky, D., et al., 2022. Coatings for sustainable paper-based flexible packaging: Barrier properties and processability. TAPPI Journal 21 (11), 617–622. https:// doi.org/10.32964/TJ21.11.617. Yingui, L., Jiali, W., Shuyu, X., et al., 2010. Embedded microcontroller-based sealing synchronization scheme for continuous automatic F/F/S packaging machines. In: Proceedings of the 2010 the 2nd International Conference on Computer and Automation Engineering (ICCAE). IEEE, pp. 303–306. https://doi.org/10.1109/ICCAE.2010.5451945 Zentralverband Elektrotechnik – und Elektronikindustrie e.V., 1980. Ultrasonic Assembly of Thermoplastic Mouldings and Semi-Finished Products – Recommendations on Methods, Construction and Applications. Frankfurt: Fachverband Electroschweissgeräte.-
local.type.refereedRefereed-
local.type.specifiedBook Section-
local.bibliographicCitation.statusEarly view-
dc.identifier.doi10.1016/b978-0-443-34158-8.00001-3-
local.provider.typePdf-
local.bibliographicCitation.btitleReference Module in Food Science-
local.uhasselt.internationalyes-
item.fulltextWith Fulltext-
item.fullcitationBAMPS, Bram; Merabtene, Mahdi & Ilhan, Ilknur (2025) Flexible Package Manufacturing – Pouch Formation and Sealing. In: Lee, Dong Sun (Ed.). Encyclopedia of Food Packaging, Elsevier,.-
item.accessRightsRestricted Access-
item.contributorBAMPS, Bram-
item.contributorMerabtene, Mahdi-
item.contributorIlhan, Ilknur-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Elsevier Chapter.pdf
  Restricted Access
Early view772.11 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.