Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/47424
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJAVED, Ayesha-
dc.contributor.authorMITRA, Koondanibha-
dc.contributor.authorPOP, Sorin-
dc.date.accessioned2025-10-01T09:45:03Z-
dc.date.available2025-10-01T09:45:03Z-
dc.date.issued2025-
dc.date.submitted2025-09-23T19:25:44Z-
dc.identifier.citationSequeira, Adélia; Silvestre, Ana; Valtchev, Svilen S.; Janela, João (Ed.). Numerical Mathematics and Advanced Applications ENUMATH 2023, Volume 1, Spinger Cham, p. 504 -514-
dc.identifier.isbn9783031861727-
dc.identifier.isbn9783031861734-
dc.identifier.issn1439-7358-
dc.identifier.issn2197-7100-
dc.identifier.urihttp://hdl.handle.net/1942/47424-
dc.description.abstractWe consider the Euler-implicit discretization of a class of nonlinear and possibly degenerate parabolic equations. Here we discuss some linear iterative schemes to approximate the solutions to the resulting time-discrete equations. The schemes rely on a splitting strategy: by adding new unknowns, the nonlinear terms only appear in algebraic equations. For the resulting system, we present different linearization schemes, and discuss their convergence, from both theoretical and numerical point of view.-
dc.language.isoen-
dc.publisherSpinger Cham-
dc.relation.ispartofseriesLecture Notes in Computational Science and Engineering-
dc.titleSplitting-Based Linearization Schemes for Doubly Degenerate Parabolic Problems-
dc.typeProceedings Paper-
local.bibliographicCitation.authorsSequeira, Adélia-
local.bibliographicCitation.authorsSilvestre, Ana-
local.bibliographicCitation.authorsValtchev, Svilen S.-
local.bibliographicCitation.authorsJanela, João-
local.bibliographicCitation.conferencedate2023, September 4-8-
local.bibliographicCitation.conferencenameENUMATH 2023-
local.bibliographicCitation.conferenceplaceLisbon, Portugal-
dc.identifier.epage514-
dc.identifier.spage504-
local.bibliographicCitation.jcatC1-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
local.relation.ispartofseriesnr153-
dc.identifier.doi10.1007/978-3-031-86173-4_51-
dc.identifier.eissn2197-7100-
local.provider.typePdf-
local.bibliographicCitation.btitleNumerical Mathematics and Advanced Applications ENUMATH 2023, Volume 1-
local.uhasselt.internationalyes-
item.contributorJAVED, Ayesha-
item.contributorMITRA, Koondanibha-
item.contributorPOP, Sorin-
item.fullcitationJAVED, Ayesha; MITRA, Koondanibha & POP, Sorin (2025) Splitting-Based Linearization Schemes for Doubly Degenerate Parabolic Problems. In: Sequeira, Adélia; Silvestre, Ana; Valtchev, Svilen S.; Janela, João (Ed.). Numerical Mathematics and Advanced Applications ENUMATH 2023, Volume 1, Spinger Cham, p. 504 -514.-
item.fulltextWith Fulltext-
item.accessRightsRestricted Access-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Splitting-Based Linearization Schemes for Doubly Degenerate Parabolic Problems.pdf
  Restricted Access
Published version451.8 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.