Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/47424
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | JAVED, Ayesha | - |
dc.contributor.author | MITRA, Koondanibha | - |
dc.contributor.author | POP, Sorin | - |
dc.date.accessioned | 2025-10-01T09:45:03Z | - |
dc.date.available | 2025-10-01T09:45:03Z | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-09-23T19:25:44Z | - |
dc.identifier.citation | Sequeira, Adélia; Silvestre, Ana; Valtchev, Svilen S.; Janela, João (Ed.). Numerical Mathematics and Advanced Applications ENUMATH 2023, Volume 1, Spinger Cham, p. 504 -514 | - |
dc.identifier.isbn | 9783031861727 | - |
dc.identifier.isbn | 9783031861734 | - |
dc.identifier.issn | 1439-7358 | - |
dc.identifier.issn | 2197-7100 | - |
dc.identifier.uri | http://hdl.handle.net/1942/47424 | - |
dc.description.abstract | We consider the Euler-implicit discretization of a class of nonlinear and possibly degenerate parabolic equations. Here we discuss some linear iterative schemes to approximate the solutions to the resulting time-discrete equations. The schemes rely on a splitting strategy: by adding new unknowns, the nonlinear terms only appear in algebraic equations. For the resulting system, we present different linearization schemes, and discuss their convergence, from both theoretical and numerical point of view. | - |
dc.language.iso | en | - |
dc.publisher | Spinger Cham | - |
dc.relation.ispartofseries | Lecture Notes in Computational Science and Engineering | - |
dc.title | Splitting-Based Linearization Schemes for Doubly Degenerate Parabolic Problems | - |
dc.type | Proceedings Paper | - |
local.bibliographicCitation.authors | Sequeira, Adélia | - |
local.bibliographicCitation.authors | Silvestre, Ana | - |
local.bibliographicCitation.authors | Valtchev, Svilen S. | - |
local.bibliographicCitation.authors | Janela, João | - |
local.bibliographicCitation.conferencedate | 2023, September 4-8 | - |
local.bibliographicCitation.conferencename | ENUMATH 2023 | - |
local.bibliographicCitation.conferenceplace | Lisbon, Portugal | - |
dc.identifier.epage | 514 | - |
dc.identifier.spage | 504 | - |
local.bibliographicCitation.jcat | C1 | - |
local.type.refereed | Refereed | - |
local.type.specified | Proceedings Paper | - |
local.relation.ispartofseriesnr | 153 | - |
dc.identifier.doi | 10.1007/978-3-031-86173-4_51 | - |
dc.identifier.eissn | 2197-7100 | - |
local.provider.type | - | |
local.bibliographicCitation.btitle | Numerical Mathematics and Advanced Applications ENUMATH 2023, Volume 1 | - |
local.uhasselt.international | yes | - |
item.contributor | JAVED, Ayesha | - |
item.contributor | MITRA, Koondanibha | - |
item.contributor | POP, Sorin | - |
item.fullcitation | JAVED, Ayesha; MITRA, Koondanibha & POP, Sorin (2025) Splitting-Based Linearization Schemes for Doubly Degenerate Parabolic Problems. In: Sequeira, Adélia; Silvestre, Ana; Valtchev, Svilen S.; Janela, João (Ed.). Numerical Mathematics and Advanced Applications ENUMATH 2023, Volume 1, Spinger Cham, p. 504 -514. | - |
item.fulltext | With Fulltext | - |
item.accessRights | Restricted Access | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Splitting-Based Linearization Schemes for Doubly Degenerate Parabolic Problems.pdf Restricted Access | Published version | 451.8 kB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.