Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/47433
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | BIJNENS, Bram | - |
dc.contributor.author | GIELEN, Sam | - |
dc.contributor.author | MAES, Wouter | - |
dc.contributor.author | VANDEWAL, Koen | - |
dc.date.accessioned | 2025-10-02T09:45:40Z | - |
dc.date.available | 2025-10-02T09:45:40Z | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-09-22T11:25:13Z | - |
dc.identifier.citation | Advanced functional materials, (Art N° e14973) | - |
dc.identifier.uri | http://hdl.handle.net/1942/47433 | - |
dc.description.abstract | Organic semiconductors offer unique advantages for infrared (IR) detection, such as mechanical flexibility and spectral tunability. However, the wavelength range of organic photodiodes is limited to the short-wave IR region. Here, it is demonstrated that by employing a bolometer device architecture comprising solution or vacuum-deposited doped organic semiconductors, the detection range can be extended beyond 10 µm, reaching detectivities as high as 8·10⁹ Jones. While thermal detectors such as bolometers are typically slower than photonic detectors, it is shown that reducing the total device thickness enables response times down to 41 ms, which is sufficient for imaging applications. It is further illustrated that the low thermal conductivity of organic semiconductors allows pixel sizes of 10 µm, which are still compatible with a detectivity ≈109 Jones when the total device thickness is kept below 1000 nm. These findings highlight the strong potential of organic bolometers, particularly in applications where spectral reach is critical. | - |
dc.description.sponsorship | This work was funded by the European Research Council (ERC, grantagreement 864625) and the Special Research Fund (BOF) of Hasselt Uni-versity (BOF21OWB25). The authors also thank the Research Founda-tion – Flanders (FWO Vlaanderen) for continuing financial support (post-doctoral scholarship 1266923N (S.G.), MALDI‒ToF infrastructure projectI006320N, and the Scientific Research Network “Supramolecular Chem-istry and Materials” W000620N) | - |
dc.language.iso | en | - |
dc.publisher | Wiley | - |
dc.rights | 2025 Wiley-VCH GmbH | - |
dc.subject.other | infrared detection | - |
dc.subject.other | molecular doping | - |
dc.subject.other | organic semiconductors | - |
dc.title | Doped Organic Semiconductors for Infrared Detection | - |
dc.type | Journal Contribution | - |
local.bibliographicCitation.jcat | A1 | - |
dc.relation.references | [1] J. Huang, J. Lee, J. Vollbrecht, V. V. Brus, A. L. Dixon, D. X. Cao, Z. Zhu, Z. Du, H. Wang, K. Cho, "A high‐performance solution‐processed organic photodetector for near‐infrared sensing", Advanced Materials 2020, 32, 1906027, 10.1002/adma.201906027 [2] Z. Lan, M.-H. Lee, F. Zhu, "Recent Advances in Solution‐Processable Organic Photodetectors and Applications in Flexible Electronics", Advanced Intelligent Systems 2021, 4, 2100167, 10.1002/aisy.202100167 [3] C. C. Lee, R. Estrada, Y. Z. Li, S. Biring, N. R. A. Amin, M. Z. Li, S. W. Liu, K. T. Wong, "Vacuum‐processed small molecule organic photodetectors with low dark current density and strong response to near‐infrared wavelength", Advanced Optical Materials 2020, 8, 2000519, 10.1002/adom.202000519 [4] Y. Wang, T. Zhang, D. Samigullina, L. C. Winkler, F. Dollinger, J. Kublitski, X. Jia, R. Ji, S. Reineke, D. Spoltore, "Semitransparent Near‐Infrared Organic Photodetectors: Flexible, Large‐Area, and Physical‐Vapor‐Deposited for Versatile Advanced Optical Applications", Advanced Functional Materials 2024, 2313689, 10.1002/adfm.202313689 [5] Z. Ye, X. Li, H. Li, Z. Xu, K. Ke, Y. Gao, X. Tang, F. S. Yang, X. Xu, X. Li, "Optical resonant cavities carving pathways in tunable wavelength sensitive visible-NIR organic photodetectors", Nano Materials Science 2024, 10.1016/j.nanoms.2024.10.001 [6] J. Wang, S. Ullbrich, J.-L. Hou, D. Spoltore, Q. Wang, Z. Ma, Z. Tang, K. Vandewal, "Organic cavity photodetectors based on nanometer-thick active layers for tunable monochromatic spectral response", Acs Photonics 2019, 6, 1393, 10.1021/acsphotonics.9b00471 [7] J. Yang, J. Huang, R. Li, H. Li, B. Sun, Q. Lin, M. Wang, Z. Ma, K. Vandewal, Z. Tang, "Cavity-enhanced near-infrared organic photodetectors based on a conjugated polymer containing [1, 2, 5] selenadiazolo [3, 4-c] pyridine", Chemistry of Materials 2021, 33, 5147, 10.1021/acs.chemmater.1c01196 [8] J. Vanderspikken, Q. Liu, Z. Liu, T. Vandermeeren, T. Cardeynaels, S. Gielen, B. Van Mele, N. Van den Brande, B. Champagne, K. Vandewal, "Tuning electronic and morphological properties for high‐performance wavelength‐selective organic near‐infrared cavity photodetectors", Advanced functional materials 2022, 32, 2108146, 10.1002/adfm.202108146 [9] Z. Tang, Z. Ma, A. Sánchez‐Díaz, S. Ullbrich, Y. Liu, B. Siegmund, A. Mischok, K. Leo, M. Campoy‐Quiles, W. Li, "Polymer: fullerene bimolecular crystals for near‐infrared spectroscopic photodetectors", Advanced Materials 2017, 29, 1702184, 10.1002/adma.201702184 [10] L. Yoon Ho, L. Yoon Ho, O. Y. Kweon, O. Y. Kweon, K. Hong-Gee, K. Hongki, K. Hong-Ki, K. Hong-Ki, Y. Jong Heun, Y. Jong Heun, H. Seul Gi, H. Seul Gi, O. Joon Hak, O. Joon Hak, "Recent advances in organic sensors for health self-monitoring systems", Journal of Materials Chemistry C 2018, 10.1039/c8tc02230e [11] Z. Li, Z. He, C. Xi, F. Zhang, L. Huang, Y. Yu, H. H. Tan, C. Jagadish, L. Fu, "Review on III–V semiconductor nanowire array infrared photodetectors", Advanced Materials Technologies 2023, 8, 2202126, 10.1002/admt.202202126 [12] S. Gielen, C. Kaiser, F. Verstraeten, J. Kublitski, J. Benduhn, D. Spoltore, P. Verstappen, W. Maes, P. Meredith, A. Armin, "Intrinsic detectivity limits of organic near‐infrared photodetectors", Advanced Materials 2020, 32, 2003818, 10.1002/adma.202003818 [13] O. J. Sandberg, C. Kaiser, S. Zeiske, N. Zarrabi, S. Gielen, W. Maes, K. Vandewal, P. Meredith, A. Armin, "Mid-gap trap state-mediated dark current in organic photodiodes", Nature Photonics 2023, 17, 368, 10.1038/s41566-023-01173-5 [14] K. Valkeneers, J. Raymakers, Q. Liu, J. Vanderspikken, Y. Wang, J. Kesters, T. J. Quill, Z. Liu, N. Van den Brande, L. Lutsen, "A tetrathienopyrrole-based ladder-type donor polymer for high-performance organic near-infrared cavity detectors", Materials Horizons 2023, 10, 5704, 10.1039/D3MH01010D [15] J. Li, Z. Li, J. Wang, X. Chen, "Study of conductive polymer PEDOT: PSS for infrared thermal detection", Optical Materials Express 2019, 9, 4474, 10.1364/OME.9.004474 [16] N. Li, X. Hu, X. Sui, Q. Chen, T. N. Ng, "Infrared light detection technology based on organics", ACS Applied Electronic Materials 2023, 5, 21, 10.1021/acsaelm.2c01561 [17] S. Meskers, J. Van Duren, R. Janssen, "Stimulation of electrical conductivity in a π-conjugated polymeric conductor with infrared light", Journal of applied physics 2002, 92, 7041, 10.1063/1.1519948 [18] A. Rogalski, "Infrared detectors: an overview", Infrared Physics & Technology 2002, 10.1016/s1350-4495(02)00140-8 [19] A. Rogalski, "Infrared detectors: status and trends", Progress in Quantum Electronics 2003, 10.1016/s0079-6727(02)00024-1 [20] L. Xing-Ming, L. Xing-Ming, L. Xing-Ming, F. Haisheng, F. Hua-Jun, L. Litian, L. Litian, L. Litian, "Study on new structure uncooled a-Si microbolometer for infrared detection", Microelectronics Journal 2007, 10.1016/j.mejo.2007.04.018 [21] A. Rogalski, "History of infrared detectors", Opto-electronics Review 2012, 10.2478/s11772-012-0037-7 [22] J. Ricardo, J. Ricardo, J. Ricardo, J. Ricardo, M. Mario, M. Mario, T. Alfonso, T. Alfonso, A. Morales–Sánchez, M. Alfredo, P. Arturo, P. Arturo, P. Arturo, D. Ferrusca, F. Daniel, F. Daniel, R.-M. José, R.-M. Jose de Jesus, J. Castro‐Ramos, C.-R. Jorge, J. Castro-Ramos, H.-P. Julio Noel, H.-P. Julio Noel, C. Eduardo, C. Eduardo, C. Eduardo, "Fabrication of Microbolometer Arrays Based on Polymorphous Silicon-Germanium", Sensors 2020, 10.3390/s20092716 [23] R. Nuggehalli, Microbolometers: Fundamentals, Materials, and Recent Developments, Woodhead Publishing, 2021, 10.1016/C2018-0-01197-4. [24] A. Rogalski, "Next decade in infrared detectors", presented at Electro-Optical and Infrared Systems: Technology and Applications XIV, 2017, 10.1117/12.2300779. [25] A. Rogalski, P. Martyniuk, M. Kopytko, "Challenges of small-pixel infrared detectors: a review", Reports on Progress in Physics 2016, 79, 046501, 10.1088/0034-4885/79/4/046501 [26] J. Farrell, F. Xiao, S. Kavusi, "Resolution and light sensitivity tradeoff with pixel size", presented at Digital Photography II, 2006, 10.1117/12.646805. [27] U. Dillner, E. Kessler, H.-G. Meyer, "Figures of merit of thermoelectric and bolometric thermal radiation sensors", Journal of Sensors and Sensor Systems 2013, 2, 85, 10.5194/jsss-2-85-2013 [28] A. Håkansson, M. Shahi, J. W. Brill, S. Fabiano, X. Crispin, "Conducting‐Polymer Bolometers for Low‐Cost IR‐Detection Systems", Advanced Electronic Materials 2019, 5, 1800975, 10.1002/aelm.201800975 [29] X. Rodríguez-Martínez, F. Saiz, B. Dörling, S. Marina, J. Guo, K. Xu, H. Chen, J. Martin, I. McCulloch, R. Rurali, J. S. Reparaz, M. Campoy-Quiles, "On The Thermal Conductivity of Conjugated Polymers for Thermoelectrics", Advanced Energy Materials 2024, 2401705, 10.1002/aenm.202401705 [30] M. Schwarze, C. Gaul, R. Scholz, F. Bussolotti, A. Hofacker, K. S. Schellhammer, B. Nell, B. D. Naab, Z. Bao, D. Spoltore, "Molecular parameters responsible for thermally activated transport in doped organic semiconductors", Nature materials 2019, 18, 242, 10.1038/s41563-018-0277-0 [31] A. A. Guermoudi, P. Y. Cresson, A. Ouldabbes, G. Boussatour, T. Lasri, "Thermal conductivity and interfacial effect of parylene C thin film using the 3-omega method", Journal of Thermal Analysis and Calorimetry 2021, 145, 1, 10.1007/s10973-020-09612-z [32] M. Zamadar, S. Asaoka, D. C. Grills, J. R. Miller, "Giant infrared absorption bands of electrons and holes in conjugated molecules", Nature Communications 2013, 4, 10.1038/ncomms3818 [33] M. S. Vezie, S. Few, I. Meager, G. Pieridou, B. Dörling, R. S. Ashraf, A. R. Goñi, H. Bronstein, I. McCulloch, S. C. Hayes, "Exploring the origin of high optical absorption in conjugated polymers", Nature materials 2016, 15, 746, 10.1038/nmat4645 [34] P. K. Yadav, I. Yadav, B. Ajitha, A. Rajasekar, S. Gupta, Y. A. K. Reddy, "Advancements of Uncooled Infrared Microbolometer Materials: A Review", Sensors and Actuators A: Physical 2022, 342, 113611, 10.1016/j.sna.2022.113611 [35] G. Y. Lee, B. S. Mun, H. Ju, "Effect of thermal conductivity of substrate on the giant persistent photoconductivity of vanadium dioxide device", Advanced Electronic Materials 2022, 8, 2101327, 10.1002/aelm.202101327 [36] S. Lee, K. Hippalgaonkar, F. Yang, J. Hong, C. Ko, J. Suh, K. Liu, K. Wang, J. J. Urban, X. Zhang, "Anomalously low electronic thermal conductivity in metallic vanadium dioxide", Science 2017, 355, 371, 10.1126/science.aag0410 [37] W. X. Zhou, Y. Cheng, K. Q. Chen, G. Xie, T. Wang, G. Zhang, "Thermal conductivity of amorphous materials", Advanced Functional Materials 2020, 30, 1903829, 10.1002/adfm.201903829 [38] T. L. Bergman, A. S. Lavine, F. P. Incropera, D. P. DeWitt, Fundamentals of heat and mass transfer, John Wiley & Sons, 2011, [39] K. Vandewal, L. Goris, I. Haeldermans, M. Nesladek, K. Haenen, P. Wagner, J. Manca, "Fourier-transform photocurrent spectroscopy for a fast and highly sensitive spectral characterization of organic and hybrid solar cells", Thin Solid Films 2008, 516, 7135, 10.1016/j.tsf.2007.12.056 [40] M. Vanecek, A. Poruba, "Fourier transform photocurrent spectroscopy applied to a broad variety of electronically active thin films (silicon, carbon, organics)", Thin Solid Films 2007, 515, 7499, 10.1016/j.tsf.2006.11.145 [41] Y. Li, L. Su, C. Shou, C. Yu, J. Deng, Y. Fang, "Surface-enhanced molecular spectroscopy (SEMS) based on perfect-absorber metamaterials in the mid-infrared", Scientific Reports 2013, 3, 2865, 10.1038/srep02865 [42] S. Farmer, D. Kennepohl, W. Reusch, "Infrared Spectra of Some Common Functional Groups", in Organic Chemistry, LibreTexts, 2025. [43] F. Völklein, A. Wiegand, V. Baier, "High-sensitivity radiation thermopiles made of BiSbTe films", Sensors and Actuators A: Physical 1991, 29, 87, 10.1016/0924-4247(91)87109-G [44] M. C. Foote, E. W. Jones, T. Caillat, "Uncooled thermopile infrared detector linear arrays with detectivity greater than 10/sup 9/ cmHz/sup 1/2//W", IEEE Transactions on Electron Devices 1998, 45, 1896, 10.1109/16.711353 [45] S. Sedky, P. Fiorini, K. Baert, L. Hermans, R. Mertens, "Characterization and optimization of infrared poly SiGe bolometers", IEEE Transactions on Electron Devices 1999, 46, 675, 10.1109/16.753700 [46] D. Zintu, G. Tosone, A. Mercuri, "Dual ion beam sputtering vanadium dioxide microbolometers by surface micromachining", Infrared Physics & Technology 2002, 43, 245, 10.1016/S1350-4495(02)00147-0 [47] S. Eminoglu, D. S. Tezcan, M. Y. Tanrikulu, T. Akin, "Low-cost uncooled infrared detectors in CMOS process", Sensors and Actuators A: Physical 2003, 109, 102, 10.1016/j.sna.2003.08.013 [48] D. S. Tezcan, S. Eminoglu, T. Akin, "A low-cost uncooled infrared microbolometer detector in standard CMOS technology", IEEE Transactions on Electron Devices 2003, 50, 494, 10.1109/TED.2002.807453 [49] N. Chi-Anh, H.-J. Shin, K. Kim, Y.-H. Han, S. Moon, "Characterization of uncooled bolometer with vanadium tungsten oxide infrared active layer", Sensors and Actuators A: Physical 2005, 123-124, 87, 10.1016/j.sna.2005.04.024 [50] M. Almasri, X. Bai, J. Castracane, "Amorphous silicon two-color microbolometer for uncooled IR detection", IEEE Sensors Journal 2006, 6, 293, 10.1109/JSEN.2006.870139 [51] S. Eminoglu, M. Y. Tanrikulu, T. Akin, "A Low-Cost 128 $\times$ 128 Uncooled Infrared Detector Array in CMOS Process", Journal of Microelectromechanical Systems 2008, 17, 20, 10.1109/JMEMS.2007.910235 [52] R. S. Saxena, R. K. Bhan, C. R. Jalwania, P. S. Rana, S. K. Lomash, "Characterization of area arrays of microbolometer-based un-cooled IR detectors without using ROIC", Sensors and Actuators A: Physical 2008, 141, 359, 10.1016/j.sna.2007.10.033 [53] S. Karanth, M. A. Sumesh, V. Shobha, H. G. Shanbhogue, C. L. Nagendra, "Infrared detectors based on thin film thermistor of ternary Mn–Ni–Co–O on micro-machined thermal isolation structure", Sensors and Actuators A: Physical 2009, 153, 69, 10.1016/j.sna.2009.04.032 [54] S. Kumar, D. P. Butler, "Infrared Sensing With Self-Supporting YBCO Uncooled IR Microbolometer Array Integrated With On-Chip CCBDI Readout Circuit", IEEE Sensors Journal 2009, 9, 411, 10.1109/JSEN.2009.2014404 [55] L. X. Wang, X. A. Li, "Preparation of VO2 microbolometer for CO2 gas detection", presented at 2010 International Conference on Microwave and Millimeter Wave Technology, 8-11 May 2010, 2010, 10.1109/ICMMT.2010.5524843. [56] B. Wang, J. Lai, H. Li, H. Hu, S. Chen, "Nanostructured vanadium oxide thin film with high TCR at room temperature for microbolometer", Infrared Physics & Technology 2013, 57, 8, 10.1016/j.infrared.2012.10.006 [57] Y. E. Kesim, E. Battal, M. Y. Tanrikulu, A. K. Okyay, "An all-ZnO microbolometer for infrared imaging", Infrared Physics & Technology 2014, 67, 245, 10.1016/j.infrared.2014.07.023 [58] M. Abdel-Rahman, N. Al-Khalli, M. Zia, M. Alduraibi, B. Ilahi, E. Awad, N. Debbar, "Fabrication and design of vanadium oxide microbolometer", presented at AIP Conference Proceedings, 2017, 10.1063/1.4975416. [59] T.-W. Shen, K.-C. Chang, C.-M. Sun, W. Fang, "Performance enhance of CMOS-MEMS thermoelectric infrared sensor by using sensing material and structure design", Journal of Micromechanics and Microengineering 2019, 29, 025007, 10.1088/1361-6439/aaf7dd [60] P. S. Lin, T. W. Shen, K. C. Chan, W. Fang, "CMOS MEMS Thermoelectric Infrared Sensor With Plasmonic Metamaterial Absorber for Selective Wavelength Absorption and Responsivity Enhancement", IEEE Sensors Journal 2020, 20, 11105, 10.1109/JSEN.2020.2997534 [61] Y. Guo, M. Luo, H. Ma, H. Zhu, L. Yu, F. Yan, P. Han, X. Ji, "Microbolometer with a salicided polysilicon thermistor in CMOS technology", Opt Express 2021, 29, 37787, 10.1364/oe.439970 [62] H. J. Lee, D. Wang, T. H. Kim, D.-H. Jung, T.-H. Kil, K.-S. Lee, H.-J. Choi, S.-H. Baek, E. Yoon, W. J. Choi, J. Min Baik, "Wide-temperature (up to 100 °C) operation of thermostable vanadium oxide based microbolometers with Ti/MgF2 infrared absorbing layer for long wavelength infrared (LWIR) detection", Applied Surface Science 2021, 547, 149142, 10.1016/j.apsusc.2021.149142 [63] M. L. Tietze, J. Benduhn, P. Pahner, B. Nell, M. Schwarze, H. Kleemann, M. Krammer, K. Zojer, K. Vandewal, K. Leo, "Elementary steps in electrical doping of organic semiconductors", Nature communications 2018, 9, 1182, 10.1038/s41467-018-03302-z [64] I. D. Ingram, D. J. Tate, A. V. Parry, R. Sebastian Sprick, M. L. Turner, "A simple method for controllable solution doping of complete polymer field-effect transistors", Applied Physics Letters 2014, 104, 10.1063/1.4871096 [65] V. Untilova, T. Biskup, L. Biniek, V. Vijayakumar, M. Brinkmann, "Control of chain alignment and crystallization helps enhance charge conductivities and thermoelectric power factors in sequentially doped P3HT: F4TCNQ films", Macromolecules 2020, 53, 2441, 10.1021/acs.macromol.9b02389 | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
local.bibliographicCitation.status | Early view | - |
local.bibliographicCitation.artnr | e14973 | - |
dc.identifier.doi | 10.1002/adfm.202514973 | - |
dc.identifier.isi | 001575204800001 | - |
local.provider.type | - | |
local.uhasselt.international | no | - |
item.fullcitation | BIJNENS, Bram; GIELEN, Sam; MAES, Wouter & VANDEWAL, Koen (2025) Doped Organic Semiconductors for Infrared Detection. In: Advanced functional materials, (Art N° e14973). | - |
item.fulltext | With Fulltext | - |
item.accessRights | Embargoed Access | - |
item.embargoEndDate | 2026-04-02 | - |
item.contributor | BIJNENS, Bram | - |
item.contributor | GIELEN, Sam | - |
item.contributor | MAES, Wouter | - |
item.contributor | VANDEWAL, Koen | - |
crisitem.journal.issn | 1616-301X | - |
crisitem.journal.eissn | 1616-3028 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
adfm71837-sup-0001-suppmat (1).pdf | Supplementary material | 14.99 MB | Adobe PDF | View/Open |
Adv Funct Materials - 2025 - Bijnens - Doped Organic Semiconductors for Infrared Detection.pdf Restricted Access | Published version | 1.72 MB | Adobe PDF | View/Open Request a copy |
Doped-Organic-Semiconductors-for-Infrared-Detection.pdf Until 2026-04-02 | Peer-reviewed author version | 1.06 MB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.