Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/47436
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAhmed, Gamil-
dc.contributor.authorSheltami, Tarek-
dc.contributor.authorYASAR, Ansar-
dc.date.accessioned2025-10-02T11:54:58Z-
dc.date.available2025-10-02T11:54:58Z-
dc.date.issued2025-
dc.date.submitted2025-10-02T11:14:42Z-
dc.identifier.citationTransportation research. Part E, Logistics and transportation review, 204 (Art N° 104414)-
dc.identifier.urihttp://hdl.handle.net/1942/47436-
dc.description.abstractRecommended routes serve as the cornerstone of intelligent transportation systems, enabling efficient navigation in dynamic traffic environments. Traditional methods model the problem as a route-finding problem on dynamic graphs; however, they often suffer from heuristic inaccuracies and a tendency to become trapped in local optima. To address this challenge, this paper introduces Tabu-A*, a hybrid algorithm that integrates A*'s heuristic cost estimation with Tabu Search's global optimization capabilities. Within this framework, search efficiency is improved while incorporating the best route from each iteration accelerates convergence. Real-world distance and time data enhance adaptability to traffic variations. The algorithm achieves up to a 78.77% reduction in travel time compared to the shortest-path route and improves route duration efficiency by 65.77% over benchmark methods such as A*, Dijkstra, and Bellman-Ford. These results validate the effectiveness of the proposed approach in delivering time-efficient and congestion-aware route recommendations in dynamic environments.-
dc.description.sponsorshipThis research was funded by Project Number INML2520 under the Interdisciplinary Center of Smart Mobility and Logistics at King Fahd University of Petroleum and Minerals.-
dc.language.isoen-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.rights2025 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.-
dc.subject.otherHistorical speed data-
dc.subject.otherRoad network data-
dc.subject.otherRoute recommendation-
dc.subject.otherA*Tabu search-
dc.subject.otherOptimization-
dc.titleOptimal path recommendation in dynamic traffic networks using the hybrid Tabu-A* algorithm-
dc.typeJournal Contribution-
dc.identifier.volume204-
local.format.pages17-
local.bibliographicCitation.jcatA1-
dc.description.notesSheltami, T (corresponding author), King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Smart Mobil & Logist, Comp Engn Dept, Dhahran, Saudi Arabia.-
dc.description.notesgamil.ahmed@kfupm.edu.sa; tarek@kfupm.edu.sa; ansar.yasar@uhasselt.be-
local.publisher.placeTHE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr104414-
dc.identifier.doi10.1016/j.tre.2025.104414-
dc.identifier.isiWOS:001573316800001-
local.provider.typewosris-
local.description.affiliation[Ahmed, Gamil; Sheltami, Tarek] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Smart Mobil & Logist, Comp Engn Dept, Dhahran, Saudi Arabia.-
local.description.affiliation[Yasar, Ansar] Hasselt Univ, Transportat Res Inst IMOB, Hasselt, Belgium.-
local.uhasselt.internationalyes-
item.fullcitationAhmed, Gamil; Sheltami, Tarek & YASAR, Ansar (2025) Optimal path recommendation in dynamic traffic networks using the hybrid Tabu-A* algorithm. In: Transportation research. Part E, Logistics and transportation review, 204 (Art N° 104414).-
item.contributorAhmed, Gamil-
item.contributorSheltami, Tarek-
item.contributorYASAR, Ansar-
item.fulltextWith Fulltext-
item.accessRightsRestricted Access-
crisitem.journal.issn1366-5545-
crisitem.journal.eissn1878-5794-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Optimal path recommendation in dynamic traffic networks using the hybrid Tabu-A_ algorithm.pdf
  Restricted Access
Published version7.39 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.