Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/47478
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKirch, Jhessica Leticia-
dc.contributor.authorMOLENBERGHS, Geert-
dc.contributor.authorNegrao, Joao Alberto-
dc.contributor.authorVERBEKE, Geert-
dc.contributor.authorde Lima, Cesar Goncalves-
dc.date.accessioned2025-10-07T12:15:07Z-
dc.date.available2025-10-07T12:15:07Z-
dc.date.issued2025-
dc.date.submitted2025-10-07T12:07:15Z-
dc.identifier.citationJournal of Agricultural Biological and Environmental Statistics,-
dc.identifier.urihttp://hdl.handle.net/1942/47478-
dc.description.abstractThe identification of highly influential animals in the estimation of model parameters is fundamental to understanding individual variation in lactation patterns and to identifying unique profiles, helping the researcher to gain insight into the phenomenon under investigation. In this study, we analyzed the lactation curves of 30 Saanen goats using a nonlinear mixed-effects model derived from Wood's lactation model and applied a local influence diagnostic tool to detect animals that may disproportionately affect parameter estimates. The data comes from an unbalanced experiment designed to study the effect of cumulative stress on the average weekly milk production. The diagnostic of local influence enabled the identification of some animals with an unusual profile. Through the parameters of the fitted model, we identified that the treatment effect was not statistically significant during the experimental week, but negatively affected milk production throughout the lactation period.-
dc.description.sponsorshipThis work was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) under Grant 001.-
dc.language.isoen-
dc.publisherSPRINGER-
dc.rights2025 International Biometric Society-
dc.subject.otherInfluential observations-
dc.subject.otherLongitudinal data-
dc.subject.otherMilk yield-
dc.subject.otherRepeated measures-
dc.subject.otherWood model-
dc.titleAssessment of Local Influence in the Fitting of Lactation Curves Using Nonlinear Mixed Models-
dc.typeJournal Contribution-
local.format.pages16-
local.bibliographicCitation.jcatA1-
dc.description.notesKirch, JL (corresponding author), Univ Sao Paulo, Piracicaba, SP, Brazil.-
dc.description.notesjhessicakirch@gmail.com-
local.publisher.placeONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.statusEarly view-
dc.identifier.doi10.1007/s13253-025-00713-6-
dc.identifier.isi001575767400001-
local.provider.typewosris-
local.description.affiliation[Kirch, Jhessica Leticia; Negrao, Joao Alberto; de Lima, Cesar Goncalves] Univ Sao Paulo, Piracicaba, SP, Brazil.-
local.description.affiliation[Molenberghs, Geert] Univ Hasselt, Hasselt, Belgium.-
local.description.affiliation[Verbeke, Geert] Katholieke Univ Leuven, Leuven, Belgium.-
local.uhasselt.internationalyes-
item.accessRightsEmbargoed Access-
item.embargoEndDate2026-03-22-
item.contributorKirch, Jhessica Leticia-
item.contributorMOLENBERGHS, Geert-
item.contributorNegrao, Joao Alberto-
item.contributorVERBEKE, Geert-
item.contributorde Lima, Cesar Goncalves-
item.fullcitationKirch, Jhessica Leticia; MOLENBERGHS, Geert; Negrao, Joao Alberto; VERBEKE, Geert & de Lima, Cesar Goncalves (2025) Assessment of Local Influence in the Fitting of Lactation Curves Using Nonlinear Mixed Models. In: Journal of Agricultural Biological and Environmental Statistics,.-
item.fulltextWith Fulltext-
crisitem.journal.issn1085-7117-
crisitem.journal.eissn1537-2693-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
s13253-025-00713-6.pdf
  Restricted Access
Early view1.08 MBAdobe PDFView/Open    Request a copy
ACFrOgDYFi0zeTOu.pdf
  Until 2026-03-22
Peer-reviewed author version672.22 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.