Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/47503
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNATALIA, Yessika-
dc.contributor.authorDe Cauwer, Harald-
dc.contributor.authorNEYENS, Thomas-
dc.contributor.authorGoniewicz, Krzysztof-
dc.contributor.authorSomville, Francis-
dc.contributor.authorMOLENBERGHS, Geert-
dc.date.accessioned2025-10-13T12:29:27Z-
dc.date.available2025-10-13T12:29:27Z-
dc.date.issued2025-
dc.date.submitted2025-10-13T11:37:24Z-
dc.identifier.citationJournal of transportation security, 18 (1) (Art N° 19)-
dc.identifier.urihttp://hdl.handle.net/1942/47503-
dc.description.abstractIn recent years, statistical and mathematical models, e.g. machine learning, have been used in counterterrorism medicine research in order to understand the characteristics of terrorist incidents. The objective of this study was to assess the main risk factors related to the number of injuries using a Bayesian network analysis. Data on 338 aviation terrorism incidents between the year 2000 and 2020 were collected from the Global Terrorism Database. Seven aviation sector-specific security-affecting factors (SRIFs) were analyzed: country, region, attack type, location, property damage, injuries, and fatalities. A tree-augmented na & iuml;ve Bayes network analysis was used to define the association among the seven SRIFs with the number of injuries as training node. "Country" and "fatality" exert the greatest influence on the "injured" node, each accounting for more than 24% of the entropy reduction. This suggests that national-level factors and the severity of fatalities are key determinants in predicting injury counts. "Property damage" also demonstrated a substantial effect, contributing over 20% to the overall reduction in uncertainty. "Attack type," "region," "weapon," and "location" had comparatively lower mutual information values, indicating a weaker, but still notable, influence on injury outcomes. These findings highlight the heterogeneous contributions of SRIFs to injury prediction. Bayesian network analysis offers valuable insight into the complex interdependencies among aviation terrorism risk factors. The findings highlight the heterogeneous contributions of different SRIFs to injury prediction. These results can inform practitioners, researchers, and policymakers by supporting more proactive, evidence-based strategies for aviation security and emergency preparedness.-
dc.language.isoen-
dc.publisherSPRINGER-
dc.rightsThe Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025-
dc.subject.otherCounter-terrorism medicine-
dc.subject.otherAviation terrorism-
dc.subject.otherTransport terrorism-
dc.subject.otherBayesian network analysis-
dc.subject.otherRisk assessment-
dc.titleA Bayesian network analysis of aviation terrorism attack risks-
dc.typeJournal Contribution-
dc.identifier.issue1-
dc.identifier.volume18-
local.format.pages17-
local.bibliographicCitation.jcatA1-
dc.description.notesDe Cauwer, H (corresponding author), Sint Dimpna Reg Hosp, Dept Neurol, Geel, Belgium.; De Cauwer, H (corresponding author), Univ Antwerp, Fac Med & Hlth Sci, Antwerp, Belgium.-
dc.description.notesharald.decauwer@ziekenhuisgeel.be-
local.publisher.placeONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr19-
dc.identifier.doi10.1007/s12198-025-00315-w-
dc.identifier.isi001581732100001-
local.provider.typewosris-
local.description.affiliation[Natalia, Yessika Adelwin; Neyens, Thomas; Molenberghs, Geert] Hasselt Univ, Data Sci Inst, I BioStat, Hasselt, Belgium.-
local.description.affiliation[De Cauwer, Harald] Sint Dimpna Reg Hosp, Dept Neurol, Geel, Belgium.-
local.description.affiliation[De Cauwer, Harald; Somville, Francis] Univ Antwerp, Fac Med & Hlth Sci, Antwerp, Belgium.-
local.description.affiliation[Neyens, Thomas; Molenberghs, Geert] Katholieke Univ Leuven, Leuven Biostat & Stat Bioinformat Ctr, I BioStat, Leuven, Belgium.-
local.description.affiliation[Goniewicz, Krzysztof] Polish Air Force Univ, Dept Secur Studies, Deblin, Poland.-
local.description.affiliation[Somville, Francis] Ziekenhuis Geel, Dept Emergency Med, Geel, Belgium.-
local.uhasselt.internationalyes-
item.accessRightsEmbargoed Access-
item.embargoEndDate2026-09-27-
item.contributorNATALIA, Yessika-
item.contributorDe Cauwer, Harald-
item.contributorNEYENS, Thomas-
item.contributorGoniewicz, Krzysztof-
item.contributorSomville, Francis-
item.contributorMOLENBERGHS, Geert-
item.fullcitationNATALIA, Yessika; De Cauwer, Harald; NEYENS, Thomas; Goniewicz, Krzysztof; Somville, Francis & MOLENBERGHS, Geert (2025) A Bayesian network analysis of aviation terrorism attack risks. In: Journal of transportation security, 18 (1) (Art N° 19).-
item.fulltextWith Fulltext-
crisitem.journal.issn1938-7741-
crisitem.journal.eissn1938-775X-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
s12198-025-00315-w.pdf
  Restricted Access
Published version1.35 MBAdobe PDFView/Open    Request a copy
xx.pdf
  Until 2026-09-27
Peer-reviewed author version709.2 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.