Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/47524
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi , Yuanrui-
dc.contributor.authorYan, Yingjing-
dc.contributor.authorShen, Kaier-
dc.contributor.authorHe, Mengxue-
dc.contributor.authorLi , Yuantonghe-
dc.contributor.authorSong, Huimin-
dc.contributor.authorZheng, Chenxi-
dc.contributor.authorShi, Weize-
dc.contributor.authorYe, Fei-
dc.contributor.authorOzoemena, Kenneth Ikechukwu-
dc.contributor.authorSAFARI, Momo-
dc.contributor.authorPang, Quanquan-
dc.date.accessioned2025-10-14T12:37:12Z-
dc.date.available2025-10-14T12:37:12Z-
dc.date.issued2025-
dc.date.submitted2025-10-13T16:21:45Z-
dc.identifier.citationACS nano, 19 (39) , p. 34469 -34491-
dc.identifier.urihttp://hdl.handle.net/1942/47524-
dc.description.abstractAll-solid-state lithium-sulfur batteries (ASSLSBs), as an energy storage system for achieving the high energy density target of 600 Wh kg-1, hold significant importance in driving in next-generation battery technologies. This review focuses on the key challenges of cathode materials for high energy density ASSLSBs and systematically summarizes the recent research progress. First, the interfacial reaction mechanisms among active materials, conductive agents, and solid electrolytes in sulfur cathodes are analyzed in depth, revealing the fundamental causes of interface failure. Second, the advancements in composite cathodes are summarized, including the influence of preparation processes, material design strategies, and the structure-performance regulation mechanisms of mixed conductors. Next, the role of interface engineering strategies in enhancing reaction kinetics is discussed in detail. Furthermore, recently developed solutions for critical technical bottlenecks, such as high sulfur loading and low-temperature adaptability, are reviewed. Finally, future research directions are envisioned from the dimensions of multiscale interface engineering, material systems, and characterization techniques. This review aims to move beyond conventional single-component optimization approaches, developing a multicomponent framework for cathode design. The review further provides references for developing high-energy-density, long-cycle-life ASSLSBs, offering a comprehensive reference for advancing the practical application of this energy storage technology.-
dc.description.sponsorshipThis work was supported by the National Key Research and Development Program of China (2021YFB2500200), the National Natural Science Foundation of China (92372115, 22075002, 52203347, 22409006), and the Beijing Natural Science Foundation (No. Z220020).-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.rights2025 American Chemical Society-
dc.subject.otherall-solid-state lithium-sulfur batteries-
dc.subject.otherthree-phase-
dc.subject.otherboundary reaction-
dc.subject.othercathodeinterface-
dc.subject.otherhigh loading-
dc.subject.otherlow-temperature-
dc.subject.othermixed ionic-electronic-
dc.subject.otherconductors-
dc.subject.otherredox mediator-
dc.titleHigh Energy Density Solid-State Lithium-Sulfur Batteries: Challenges and Advances in Cathode Materials-
dc.typeJournal Contribution-
dc.identifier.epage34491-
dc.identifier.issue39-
dc.identifier.spage34469-
dc.identifier.volume19-
local.format.pages23-
local.bibliographicCitation.jcatA1-
dc.description.notesPang, QQ (corresponding author), Peking Univ, Sch Mat Sci & Engn, State Key Lab Adv Waterproof Mat, Beijing Key Lab Theory & Technol Adv Battery Mat, Beijing 100871, Peoples R China.-
dc.description.notesqqpang@pku.edu.cn-
local.publisher.place1155 16TH ST, NW, WASHINGTON, DC 20036 USA-
local.type.refereedRefereed-
local.type.specifiedReview-
dc.identifier.doi10.1021/acsnano.5c10108-
dc.identifier.pmid40999761-
dc.identifier.isi001582759900001-
local.provider.typewosris-
local.description.affiliation[Li, Yuanrui; Yan, Yingjing; Shen, Kaier; He, Mengxue; Li, Yuantonghe; Song, Huimin; Shi, Weize; Ye, Fei; Pang, Quanquan] Peking Univ, Sch Mat Sci & Engn, State Key Lab Adv Waterproof Mat, Beijing Key Lab Theory & Technol Adv Battery Mat, Beijing 100871, Peoples R China.-
local.description.affiliation[Zheng, Chenxi] Peking Univ, Int Ctr Quantum Mat, Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China.-
local.description.affiliation[Ozoemena, Kenneth Ikechukwu] Univ Witwatersrand, Mol Sci Inst, Sch Chem, ZA-2050 Johannesburg, South Africa.-
local.description.affiliation[Safari, Mohammadhosein] UHasselt, Inst Mat Res IMO imomec, B-3500 Hasselt, Belgium.-
local.uhasselt.internationalyes-
item.fulltextWith Fulltext-
item.embargoEndDate2026-03-25-
item.accessRightsEmbargoed Access-
item.contributorLi , Yuanrui-
item.contributorYan, Yingjing-
item.contributorShen, Kaier-
item.contributorHe, Mengxue-
item.contributorLi , Yuantonghe-
item.contributorSong, Huimin-
item.contributorZheng, Chenxi-
item.contributorShi, Weize-
item.contributorYe, Fei-
item.contributorOzoemena, Kenneth Ikechukwu-
item.contributorSAFARI, Momo-
item.contributorPang, Quanquan-
item.fullcitationLi , Yuanrui; Yan, Yingjing; Shen, Kaier; He, Mengxue; Li , Yuantonghe; Song, Huimin; Zheng, Chenxi; Shi, Weize; Ye, Fei; Ozoemena, Kenneth Ikechukwu; SAFARI, Momo & Pang, Quanquan (2025) High Energy Density Solid-State Lithium-Sulfur Batteries: Challenges and Advances in Cathode Materials. In: ACS nano, 19 (39) , p. 34469 -34491.-
crisitem.journal.issn1936-0851-
crisitem.journal.eissn1936-086X-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
High Energy Density Solid-State Lithium–Sulfur Batteries_ Challenges and Advances in Cathode Materials.pdf
  Restricted Access
Published version4.71 MBAdobe PDFView/Open    Request a copy
ACFrOgDz7D_Bs-mwSEWFW0WmuN1rCItIxVJFwZUGU596yugB87aPge1I9Wcl9eORfK4s2sJ.pdf
  Until 2026-03-25
Peer-reviewed author version2.39 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.