Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/47761
Full metadata record
DC FieldValueLanguage
dc.contributor.authorConcepcion, Leonardo-
dc.contributor.authorNAPOLES RUIZ, Gonzalo-
dc.contributor.authorSalgueiro, Yamisleydi-
dc.contributor.authorVANHOOF, Koen-
dc.date.accessioned2025-11-21T13:48:23Z-
dc.date.available2025-11-21T13:48:23Z-
dc.date.issued2025-
dc.date.submitted2025-11-18T13:58:31Z-
dc.identifier.citationIEEE transactions on fuzzy systems, 33 (11) , p. 3959 -3966-
dc.identifier.urihttp://hdl.handle.net/1942/47761-
dc.description.abstractFuzzy cognitive maps (FCMs) are knowledge-based recurrent neural networks that involve neural concepts and causal relationships. Despite being successful in several domains, classic FCMs often fall behind black-box models in terms of their approximation capabilities. However, the literature only reports a few studies devoted to understanding their theoretical foundations and the cause of their limited performance. In this article, we prove that FCMs are not universal approximators and base our proof on recent theoretical findings and theorems related to the dynamic behavior of FCM-based models. Our results hold for activation functions that are bounded and monotonically increasing. These analytical findings and the empirical evidence (from the analysis of covering and proximity measures applied to synthetically generated FCMs) show that there are significant state space regions that are never produced for some problems. Consequently, classic FCM models cannot generally approximate these values, thus hindering their predictive capabilities in machine learning tasks. The same theoretical results that exposed the design weaknesses of FCMs can be used to overcome them. As the second contribution of our article, we propose two enhanced FCM-based classifiers equipped with a quasi-nonlinear reasoning rule, together with a decision-making layer that uses derived analytical results. To fine-tune the classifiers' learnable parameters, we introduce a backpropagationlike algorithm that balances convergence and accuracy. Numerical simulations using real-world datasets indicate that our enhanced FCM-based classifiers significantly outperform the classical model.-
dc.description.sponsorshipNLHPC [CCSS210001]-
dc.language.isoen-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.rights2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.-
dc.subject.otherNeurons-
dc.subject.otherConvergence-
dc.subject.otherCognition-
dc.subject.otherFuzzy systems-
dc.subject.otherNumerical models-
dc.subject.otherMachine learning-
dc.subject.otherAccuracy-
dc.subject.otherTraining-
dc.subject.otherFuzzy cognitive maps-
dc.subject.otherAnalytical models-
dc.subject.otherfuzzy cognitive maps (FCMs)-
dc.subject.otherrecurrent neural networks-
dc.subject.otheruniversal approximation-
dc.titleClassic Fuzzy Cognitive Maps Are Not Universal Approximators-
dc.typeJournal Contribution-
dc.identifier.epage3966-
dc.identifier.issue11-
dc.identifier.spage3959-
dc.identifier.volume33-
local.format.pages8-
local.bibliographicCitation.jcatA1-
dc.description.notesSalgueiro, Y (corresponding author), Univ Talca, Fac Engn, Dept Ind Engn, Curico 3340000, Chile.-
dc.description.notesysalgueiro@utalca.cl-
local.publisher.place445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1109/TFUZZ.2025.3600567-
dc.identifier.isi001607907400016-
dc.contributor.orcidMuniz da Conceição, Lucas Henrique/0000-0002-7383-794X-
local.provider.typewosris-
local.description.affiliation[Concepcion, Leonardo] Univ Granada, Dept Comp Sci & Artificial Intelligence, Granada 18071, Spain.-
local.description.affiliation[Concepcion, Leonardo] Univ Granada, Andalusian Res Inst Data Sci & Computat Intelligen, Granada 18071, Spain.-
local.description.affiliation[Napoles, Gonzalo] Tilburg Univ, Dept Cognit Sci & Artificial Intelligence, NL-5000 LE Tilburg, Netherlands.-
local.description.affiliation[Salgueiro, Yamisleydi] Univ Talca, Fac Engn, Dept Ind Engn, Curico 3340000, Chile.-
local.description.affiliation[Vanhoof, Koen] Hasselt Univ, Res Grp Business Informat, B-3500 Hasselt, Belgium.-
local.uhasselt.internationalyes-
item.fullcitationConcepcion, Leonardo; NAPOLES RUIZ, Gonzalo; Salgueiro, Yamisleydi & VANHOOF, Koen (2025) Classic Fuzzy Cognitive Maps Are Not Universal Approximators. In: IEEE transactions on fuzzy systems, 33 (11) , p. 3959 -3966.-
item.contributorConcepcion, Leonardo-
item.contributorNAPOLES RUIZ, Gonzalo-
item.contributorSalgueiro, Yamisleydi-
item.contributorVANHOOF, Koen-
item.fulltextWith Fulltext-
item.accessRightsRestricted Access-
crisitem.journal.issn1063-6706-
crisitem.journal.eissn1941-0034-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Classic Fuzzy Cognitive Maps Are Not Universal Approximators.pdf
  Restricted Access
Published version627.28 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.