Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/47786
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKHAN, Hamza-
dc.contributor.authorWoodruff, Henry C.-
dc.contributor.authorGiraldo, Diana L.-
dc.contributor.authorWerthen-Brabants, Lorin-
dc.contributor.authorMali, Shruti Atul-
dc.contributor.authorAmirrajab, Sina-
dc.contributor.authorDe Brouwer , Edward-
dc.contributor.authorPOPESCU, Veronica-
dc.contributor.authorVAN WIJMEERSCH, Bart-
dc.contributor.authorGerlach, Oliver-
dc.contributor.authorSijbers, Jan-
dc.contributor.authorPEETERS, Liesbet-
dc.contributor.authorLambin, Philippe-
dc.date.accessioned2025-11-25T11:16:32Z-
dc.date.available2025-11-25T11:16:32Z-
dc.date.issued2025-
dc.date.submitted2025-11-24T16:50:04Z-
dc.identifier.citationFrontiers in Neuroscience, 19 (Art N° 1610401)-
dc.identifier.urihttp://hdl.handle.net/1942/47786-
dc.description.abstractBackground Multiple sclerosis (MS) is an autoimmune disease of the central nervous system, leading to varying degrees of functional impairment. Conventional tools, such as the Expanded Disability Status Scale (EDSS), lack sensitivity to subtle disease worsening. Radiomics provides a quantitative imaging approach to address this limitation. This study applied machine learning (ML) and radiomics features from T2-weighted Fluid-Attenuated Inversion Recovery (FLAIR) magnetic resonance imaging (MRI) to predict disability worsening in MS.Methods A retrospective analysis was performed on real-world data from 247 PwMS across two centers. Disability worsening was defined as a change in EDSS over two years. FLAIR MRIs underwent preprocessing and super-resolution reconstruction to enhance low-resolution images. White matter lesions (WML) were segmented using the Lesion Segmentation Toolbox (LST), and tissue segmentation was performed using sequence Adaptive Multimodal Segmentation. Radiomics features from WML and normal-appearing white matter (NAWM) were extracted using Pyradiomics, harmonized with Longitudinal ComBat, followed by recursive feature elimination for feature selection. Elastic Net, Balanced Random Forest (BRFC), and Light Gradient-Boosting Machine (LGBM) models were trained and evaluated.Results The LGBM model with harmonized radiomics and clinical features outperformed the clinical-only model, achieving a test area under the precision-recall curve (PR AUC) of 0.20 and a receiver operating characteristic area under the curve (ROC AUC) of 0.64. Key predictive features, among others, included Gray-Level Co-Occurrence Matrix (GLCM) maximum probability (WML) and Gray-Level Dependence Matrix (GLDM) dependence non-uniformity (NAWM). However, short-term longitudinal changes showed limited predictive power (PR AUC = 0.11, ROC AUC = 0.69).Conclusion These findings highlight the potential of ML-driven radiomics in predicting disability worsening, warranting validation in larger, balanced datasets and exploration of advanced deep learning approaches.-
dc.description.sponsorshipFunding The author(s) declare that financial support was received for the research and/or publication of this article. This research received funding from the Flemish Government under the “Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen” program, Stichting Multiple Sclerosis Research (19-1040 MS) and the Bijzonder OnderzoeksFonds (BOF19DOCMA10). Authors acknowledge financial support from the European Union’s Horizon research and innovation programme under grant agreements: ImmunoSABR n° 733008, CHAIMELEON n° 952172, EuCanImage n° 952103, IMI-OPTIMA n° 101034347, RADIOVAL (HORIZONHLTH-2021-DISEASE-04-04) n°101057699, EUCAIM (DIGITAL2022-CLOUD-AI-02) n°101100633, GLIOMATCH n° 101136670, AIDAVA (HORIZON-HLTH-2021-TOOL-06) n°101057062, and REALM (HORIZON-HLTH-2022-TOOL-11) n° 101095435. Acknowledgments The authors thank Zohaib Salahuddin (The D-Lab, Department of Precision Medicine, GROW – Research Institute for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands) for his valuable feedback and insights during the development of this study. We also acknowledge Raymond Hupperts (Academic MS Center Zuyd, Department of Neurology, Zuyderland Medical Center, SittardGeleen, Netherlands) for his guidance and support in shaping the clinical aspects of this work.-
dc.language.isoen-
dc.publisherFRONTIERS MEDIA SA-
dc.rights2025 Khan, Woodruff, Giraldo, Werthen-Brabants, Mali, Amirrajab, De Brouwer, Popescu, Van Wijmeersch, Gerlach, Sijbers, Peeters and Lambin. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.-
dc.subject.othermultiple sclerosis-
dc.subject.otherradiomics-
dc.subject.othermagnetic resonance imaging-
dc.subject.otherFLAIR MRI-
dc.subject.otherwhite matter lesions-
dc.subject.otherdisability worsening-
dc.subject.othermachine learning-
dc.titleLeveraging hand-crafted radiomics on multicenter FLAIR MRI for predicting disability worsening in people with multiple sclerosis-
dc.typeJournal Contribution-
dc.identifier.volume19-
local.format.pages16-
local.bibliographicCitation.jcatA1-
dc.description.notesLambin, P (corresponding author), Maastricht Univ, GROW Res Inst Oncol & Reprod, Dept Precis Med, D Lab, Maastricht, Netherlands.; Lambin, P (corresponding author), Maastricht Univ, GROW Res Inst Oncol & Dev Biol, Med Ctr, Dept Radiol & Nucl Imaging, Maastricht, Netherlands.-
dc.description.notesphilippe.lambin@maastrichtuniversity.nl-
local.publisher.placeAVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr1610401-
local.type.programmeH2020-
local.relation.h2020REALM (HORIZON-HLTH-2022-TOOL-11) 19-1040 MS-
dc.identifier.doi10.3389/fnins.2025.1610401-
dc.identifier.pmid41235171-
dc.identifier.isi001613014000001-
local.provider.typewosris-
local.description.affiliation[Khan, Hamza; Popescu, Veronica; Van Wijmeersch, Bart; Peeters, Liesbet M.] Hasselt Univ, Univ MS Ctr, Biomed Res Inst BIOMED, Diepenbeek, Belgium.-
local.description.affiliation[Khan, Hamza; Peeters, Liesbet M.] Hasselt Univ, Data Sci Inst DSI, Diepenbeek, Belgium.-
local.description.affiliation[Khan, Hamza; Woodruff, Henry C.; Mali, Shruti Atul; Amirrajab, Sina; Lambin, Philippe] Maastricht Univ, GROW Res Inst Oncol & Reprod, Dept Precis Med, D Lab, Maastricht, Netherlands.-
local.description.affiliation[Woodruff, Henry C.; Mali, Shruti Atul; Lambin, Philippe] Maastricht Univ, GROW Res Inst Oncol & Dev Biol, Med Ctr, Dept Radiol & Nucl Imaging, Maastricht, Netherlands.-
local.description.affiliation[Giraldo, Diana L.; Sijbers, Jan] Univ Antwerp, Imec Vis Lab, Antwerp, Belgium.-
local.description.affiliation[Giraldo, Diana L.; Sijbers, Jan] Univ Antwerp, NEURO Res Ctr Excellence, Antwerp, Belgium.-
local.description.affiliation[Werthen-Brabants, Lorin] Univ Ghent, SUMO Grp, IDLab, imec, Ghent, Belgium.-
local.description.affiliation[De Brouwer, Edward] Katholieke Univ Leuven, ESAT STADIUS, Leuven, Belgium.-
local.description.affiliation[Popescu, Veronica; Van Wijmeersch, Bart; Peeters, Liesbet M.] Noorderhart, Rehabil & MS Ctr, Pelt, Belgium.-
local.description.affiliation[Gerlach, Oliver] Zuyderland Med Ctr, Acad MS Ctr Zuyd, Dept Neurol, Geleen, Netherlands.-
local.description.affiliation[Gerlach, Oliver] Maastricht Univ, Sch Mental Hlth & Neurosci, Maastricht, Netherlands.-
local.uhasselt.internationalyes-
item.fulltextWith Fulltext-
item.contributorKHAN, Hamza-
item.contributorWoodruff, Henry C.-
item.contributorGiraldo, Diana L.-
item.contributorWerthen-Brabants, Lorin-
item.contributorMali, Shruti Atul-
item.contributorAmirrajab, Sina-
item.contributorDe Brouwer , Edward-
item.contributorPOPESCU, Veronica-
item.contributorVAN WIJMEERSCH, Bart-
item.contributorGerlach, Oliver-
item.contributorSijbers, Jan-
item.contributorPEETERS, Liesbet-
item.contributorLambin, Philippe-
item.fullcitationKHAN, Hamza; Woodruff, Henry C.; Giraldo, Diana L.; Werthen-Brabants, Lorin; Mali, Shruti Atul; Amirrajab, Sina; De Brouwer , Edward; POPESCU, Veronica; VAN WIJMEERSCH, Bart; Gerlach, Oliver; Sijbers, Jan; PEETERS, Liesbet & Lambin, Philippe (2025) Leveraging hand-crafted radiomics on multicenter FLAIR MRI for predicting disability worsening in people with multiple sclerosis. In: Frontiers in Neuroscience, 19 (Art N° 1610401).-
item.accessRightsOpen Access-
crisitem.journal.eissn1662-453X-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
fnins-19-1610401.pdfPublished version3.2 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.