Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/47973
Title: Optimizing parameter estimation for electrochemical battery model: A comparative analysis of operating profiles on computational efficiency and accuracy
Authors: GUO, Feng 
Couto, Luis D.
Trad, Khiem
Mulder, Grietus
Haghverdi, Keivan
Thenaisie, Guillaume
Issue Date: 2026
Publisher: ELSEVIER
Source: Journal of Power Sources, 665 (Art N° 239044)
Abstract: Parameter estimation in electrochemical models remains a significant challenge in their application. This study investigates the impact of different operating profiles on electrochemical model parameter estimation to identify the optimal conditions. In particular, the present study is focused on Nickel Manganese Cobalt Oxide(NMC) lithium-ion batteries. Based on five fundamental current profiles (C/5, C/2, 1C, Pulse, DST), 31 combinations of conditions were generated and used for parameter estimation and validation, resulting in 961 evaluation outcomes. The Particle Swarm Optimization is employed for parameter identification in electrochemical models, specifically using the Single Particle Model (SPM). The analysis considered three dimensions: model voltage output error, parameter estimation error, and time cost. Results show that using all five profiles (C/5, C/2, 1C, Pulse, DST) minimizes voltage output error, while C/5, C/2, Pulse, DST minimizes parameter estimation error. The shortest time cost is achieved with 1C. When considering both model voltage output and parameter errors, C/5, C/2, 1C, DST is optimal. For minimizing model voltage output error and time cost, C/2, 1C is best, while 1C is ideal for parameter error and time cost. The comprehensive optimal condition is C/5, C/2, 1C, DST. These findings provide guidance for selecting current conditions tailored to specific needs.
Notes: Guo, F (corresponding author), VITO, Boeretang 200, B-2400 Mol, Belgium.
feng.guo@vito.be
Keywords: Lithium-ion battery;Electrochemical model;Parameter estimation;Optimal conditions
Document URI: http://hdl.handle.net/1942/47973
ISSN: 0378-7753
e-ISSN: 1873-2755
DOI: 10.1016/j.jpowsour.2025.239044
ISI #: 001637590200001
Rights: 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
Category: A1
Type: Journal Contribution
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
main.pdf
  Restricted Access
Published version2.94 MBAdobe PDFView/Open    Request a copy
ACFrOgBZ6OGo3Dz4KrQeXvgMsmuuFtEg-wFtoFNBwQshtTZithdb-q3bL1TY-m2lxn.pdf
  Until 2026-08-15
Peer-reviewed author version3.61 MBAdobe PDFView/Open    Request a copy
Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.