Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/48003
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDE MAESSCHALCK, Peter-
dc.contributor.authorKristiansen, Kristian Uldall-
dc.date.accessioned2026-01-07T15:00:25Z-
dc.date.available2026-01-07T15:00:25Z-
dc.date.issued2025-
dc.date.submitted2026-01-05T13:35:20Z-
dc.identifier.citationQualitative Theory of Dynamical Systems, 25 (1) (Art N° 4)-
dc.identifier.urihttp://hdl.handle.net/1942/48003-
dc.description.abstractIn this paper, we study normal forms of analytic saddle-nodes in Cn+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb C<^>{n+1}$$\end{document} with any Poincar & eacute; rank k is an element of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\in \mathbb N$$\end{document}. The approach and the results generalize those of Bonckaert and De Maesschalck from 2008 that considered k=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=1$$\end{document}. In particular, we introduce a Banach convolutional algebra that is tailored to study differential equations in the Borel plane of order k. One of the subtleties that we take care of in this paper, is that nontrivial Jordan blocks are allowed in the linear part of the vector field. We anticipate that our approach can stimulate new research and be used to study different normal forms in future work.-
dc.description.sponsorshipFWO project [G0F1822N]-
dc.language.isoen-
dc.publisherSPRINGER BASEL AG-
dc.rightsThe Author(s), under exclusive licence to Springer Nature Switzerland AG 2025-
dc.subject.otherNormal forms-
dc.subject.otherCenter manifolds-
dc.subject.otherGevrey properties-
dc.subject.otherSummability-
dc.subject.otherSaddle-nodes-
dc.titleOn k-Summable Normal Forms of Vector Fields with One Zero Eigenvalue-
dc.typeJournal Contribution-
dc.identifier.issue1-
dc.identifier.volume25-
local.format.pages33-
local.bibliographicCitation.jcatA1-
dc.description.notesKristiansen, KU (corresponding author), Tech Univ Denmark, DK-2800 Lyngby, Denmark.-
dc.description.notespeter.demaesschalck@uhasselt.be; krkri@dtu.dk-
local.publisher.placePICASSOPLATZ 4, BASEL, 4052, SWITZERLAND-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr4-
dc.identifier.doi10.1007/s12346-025-01429-1-
dc.identifier.isi001637732200001-
local.provider.typewosris-
local.description.affiliation[De Maesschalck, Peter] Hasselt Univ, Campus Diepenbeek,Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium.-
local.description.affiliation[Kristiansen, Kristian Uldall] Tech Univ Denmark, DK-2800 Lyngby, Denmark.-
local.uhasselt.internationalyes-
item.fulltextWith Fulltext-
item.contributorDE MAESSCHALCK, Peter-
item.contributorKristiansen, Kristian Uldall-
item.accessRightsRestricted Access-
item.fullcitationDE MAESSCHALCK, Peter & Kristiansen, Kristian Uldall (2025) On k-Summable Normal Forms of Vector Fields with One Zero Eigenvalue. In: Qualitative Theory of Dynamical Systems, 25 (1) (Art N° 4).-
crisitem.journal.issn1575-5460-
crisitem.journal.eissn1662-3592-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
s12346-025-01429-1.pdf
  Restricted Access
Published version549.33 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.