Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/48006
Full metadata record
DC FieldValueLanguage
dc.contributor.authorABASIYANIK, Zuhal-
dc.contributor.authorOzturk, Orhan-
dc.contributor.authorOzakbas, Serkan-
dc.date.accessioned2026-01-08T08:45:29Z-
dc.date.available2026-01-08T08:45:29Z-
dc.date.issued2025-
dc.date.submitted2025-12-23T13:04:13Z-
dc.identifier.citationMultiple Sclerosis Journal, 31 (3) , p. 1127 -1128-
dc.identifier.urihttp://hdl.handle.net/1942/48006-
dc.description.abstractIntroduction: While clinical predictors of disability progres­ sion in people with multiple sclerosis (pwMS) are well-estab­ lished, the contribution of patient-reported outcome measures (PROMs) remains underexplored. Objectives/Aims: To develop a machine learning (ML) model for predicting disability progression-defined as a change in EDSS over three years-using clinical data, performance-based tests, and PROMs. Methods: Data were collected at baseline and at a 3-year fol­ low-up, including clinical&demographic outcomes (type of MS, baseline EDSS, sex), performance-based measures (Timed Results: Data from 182 pwMS (mean EDSS±:SD: 2.28±1.9, 69% female) were analyzed. Linear Regression demonstrated the best performance, achieving the lowest error rates and high­ est predictive accuracy (MAE: 0.321, MSE: 0.185, RMSE: 0.430, R 2 : 0.951). It was closely followed by Random Forest, which also showed strong predictive power (MAE: 0.347, MSE: 0.246, RMSE: 0.495, R 2 : 0.935. Decision Tree and SVR yielded less accurate predictions, with higher error rates and lower R 2 values (MAE: 0.432 and 0.547; R 2 : 0.879 and 0.844, respec­ tively). Visual inspection of prediction outputs confirmed that Linear Regression and Random Forest models closely tracked actual EDSS scores over time, particularly in the third year. Conclusion: Linear Regression's superior metrics suggest a strong linear relationship, likely driven by baseline EDSS,-
dc.language.isoen-
dc.publisherSAGE PUBLICATIONS LTD-
dc.titleMachine learning-based prediction of disability progression in multiple sclerosis using clinical, performance-based, and patient-reported outcomes-
dc.typeJournal Contribution-
dc.identifier.epage1128-
dc.identifier.issue3-
dc.identifier.spage1127-
dc.identifier.volume31-
local.format.pages2-
local.bibliographicCitation.jcatM-
local.publisher.place1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND-
local.type.refereedRefereed-
local.type.specifiedMeeting Abstract-
dc.identifier.isi001603659903373-
local.provider.typewosris-
local.description.affiliation[Abasiyanik, Zuhal] Univ Hasselt, Diepenbeek, Belgium.-
local.description.affiliation[Ozturk, Orhan] Izmir Katip Celebi Univ, Izmir, Turkiye.-
local.description.affiliation[Ozakbas, Serkan] Izmir Univ Econ, Med Point Hosp, MS Res Assoc, Izmir, Turkiye.-
local.uhasselt.internationalyes-
item.contributorABASIYANIK, Zuhal-
item.contributorOzturk, Orhan-
item.contributorOzakbas, Serkan-
item.fullcitationABASIYANIK, Zuhal; Ozturk, Orhan & Ozakbas, Serkan (2025) Machine learning-based prediction of disability progression in multiple sclerosis using clinical, performance-based, and patient-reported outcomes. In: Multiple Sclerosis Journal, 31 (3) , p. 1127 -1128.-
item.accessRightsOpen Access-
item.fulltextWith Fulltext-
crisitem.journal.issn1352-4585-
crisitem.journal.eissn1477-0970-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
zz.pdfPublished version183.02 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.