Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/48044
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRUTTEN, Sara-
dc.contributor.authorSUMALINAB, Bryan-
dc.contributor.authorGRESSANI, Oswaldo-
dc.contributor.authorNEYENS, Thomas-
dc.contributor.authorE CASTRO ROCHA DUARTE, Elisa-
dc.contributor.authorHENS, Niel-
dc.contributor.authorFAES, Christel-
dc.date.accessioned2026-01-12T08:50:47Z-
dc.date.available2026-01-12T08:50:47Z-
dc.date.issued2025-
dc.date.submitted2025-12-23T14:20:40Z-
dc.identifier.citationStatistics and computing, 36 (1) (Art N° 38)-
dc.identifier.urihttp://hdl.handle.net/1942/48044-
dc.description.abstractDistributed lag non-linear models (DLNMs) have gained popularity for modeling nonlinear lagged relationships between exposures and outcomes. When applied to spatially referenced data, these models must account for spatial dependence, a challenge that has yet to be thoroughly explored within the penalized DLNM framework. This gap is mainly due to the complex model structure and high computational demands, particularly when dealing with large spatio-temporal datasets. To address this, we propose a novel Bayesian DLNM-Laplacian-P-splines (DLNM-LPS) approach that incorporates spatial dependence using conditional autoregressive (CAR) priors, a method commonly applied in disease mapping. Our approach offers a flexible framework for capturing nonlinear associations while accounting for spatial dependence. It uses the Laplace approximation to approximate the conditional posterior distribution of the regression parameters, eliminating the need for Markov chain Monte Carlo (MCMC) sampling, often used in Bayesian inference, thus improving computational efficiency. The methodology is evaluated through simulation studies and applied to analyze the relationship between temperature and mortality in London.-
dc.description.sponsorshipFunding TN gratefully acknowledges funding by the Research Foundation - Flanders (grant number G0A3M24N). Acknowledgements The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation - Flanders (FWO) and the Flemish Government - department EWI.-
dc.language.isoen-
dc.publisherSPRINGER-
dc.rightsThe Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025-
dc.subject.otherBayesian P-splines-
dc.subject.otherDistributed lag non-linear models-
dc.subject.otherLaplace approximation-
dc.subject.otherSpatial correlation-
dc.titlePenalized distributed lag non-linear models for small area data using Laplacian-P-splines-
dc.typeJournal Contribution-
dc.identifier.issue1-
dc.identifier.volume36-
local.format.pages12-
local.bibliographicCitation.jcatA1-
dc.description.notesRutten, S (corresponding author), Hasselt Univ, Data Sci Inst, Interuniv Inst Biostat & Stat Bioinformat I BioSta, Hasselt, Belgium.-
dc.description.notessara.rutten@uhasselt.be-
local.publisher.placeVAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr38-
local.type.programmeVSC-
dc.identifier.doi10.1007/s11222-025-10790-9-
dc.identifier.isi001631254000001-
local.provider.typewosris-
local.description.affiliation[Rutten, Sara; Sumalinab, Bryan; Gressani, Oswaldo; Neyens, Thomas; Duarte, Elisa; Hens, Niel; Faes, Christel] Hasselt Univ, Data Sci Inst, Interuniv Inst Biostat & Stat Bioinformat I BioSta, Hasselt, Belgium.-
local.description.affiliation[Sumalinab, Bryan] Mindanao State Univ, Iligan Inst Technol, Coll Sci & Math, Dept Math & Stat, Iligan, Philippines.-
local.description.affiliation[Neyens, Thomas] Katholieke Univ Leuven, Dept Publ Hlth & Primary Care, L BioStat, Leuven, Belgium.-
local.description.affiliation[Hens, Niel] Antwerp Univ, Vaccine & Infect Dis Inst, Ctr Hlth Econ Res & Modelling Infect Dis, Antwerp, Belgium.-
local.uhasselt.internationalno-
item.fullcitationRUTTEN, Sara; SUMALINAB, Bryan; GRESSANI, Oswaldo; NEYENS, Thomas; E CASTRO ROCHA DUARTE, Elisa; HENS, Niel & FAES, Christel (2025) Penalized distributed lag non-linear models for small area data using Laplacian-P-splines. In: Statistics and computing, 36 (1) (Art N° 38).-
item.fulltextWith Fulltext-
item.accessRightsEmbargoed Access-
item.embargoEndDate2026-06-05-
item.contributorRUTTEN, Sara-
item.contributorSUMALINAB, Bryan-
item.contributorGRESSANI, Oswaldo-
item.contributorNEYENS, Thomas-
item.contributorE CASTRO ROCHA DUARTE, Elisa-
item.contributorHENS, Niel-
item.contributorFAES, Christel-
crisitem.journal.issn0960-3174-
crisitem.journal.eissn1573-1375-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
s11222-025-10790-9.pdf
  Restricted Access
Published version2.1 MBAdobe PDFView/Open    Request a copy
Manuscript_author_version.pdf
  Until 2026-06-05
Peer-reviewed author version1.73 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.