Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/48102
Title: Organic Modification of Eutectogels Enhances Electrolyte/Electrode Contact in Sodium-Ion Batteries
Authors: MERCKEN, Jonas 
DE SLOOVERE, Dries 
JOOS, Bjorn 
GHOGARE, Digvijay 
Verhille, Younas
SMEETS, Sander 
DERVEAUX, Elien 
ADRIAENSENS, Peter 
VAN BAEL, Marlies 
HARDY, An 
Issue Date: 2025
Source: ChemSusChem, 18 (14)
Status: Early view
Abstract: Supporting information for this article is given via a link at the end of the document. Abstract: Na + ion conducting deep eutectic solvents hold promise as alternative electrolytes for future sodium-ion batteries because of their higher thermal stability compared to conventional liquid electrolytes, drastically improving safety characteristics. However, their liquid nature remains to pose a risk of potential leakage. In this study, the latter is resolved by the encapsulation of deep eutectic solvents in a solid host matrix, creating so-called eutectogels, which are promising alternatives to ionogels because of their cost-effectiveness. The nature of the host matrix heavily influences the mechanical properties of the gels, where completely inorganic host materials readily experience mechanical deterioration when stress is applied. In this work, organic modification of the inorganic host matrix enhances the pliability of eutectogels, decreasing their Young's modulus from 4.8 to 2.1 MPa. This results in an improved electrode/electrolyte contact (reduced charge-transfer resistance) without compromising ionic conductivity (up to 0.17 mS cm-1) or electrochemical stability window (~0.9 V vs. Na + /Na to ~4.5 vs. Na + /Na). As such, the eutectogels outperformed conventional liquid SIB electrolytes in full cells.
Document URI: http://hdl.handle.net/1942/48102
Link to publication/dataset: 10.1002/cssc.202500427
ISSN: 1864-5631
e-ISSN: 1864-564X
Rights: 2025 Wiley-VCH GmbHChemSusChemResearch Articledoi.org/10.1002/cssc.202500427
Category: A1
Type: Journal Contribution
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
manuscript depository.pdf
  Until 2026-07-15
Peer-reviewed author version1.67 MBAdobe PDFView/Open    Request a copy
ChemSusChem - 2025 - Mercken - Organic Modification of Eutectogels Enhances Electrolyte Electrode Contact in Sodium‐Ion.pdf
  Restricted Access
Published version2.34 MBAdobe PDFView/Open    Request a copy
Show full item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.