Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/48116Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.advisor | Yasar, Ansar | - |
| dc.contributor.author | WICAKSONO, Satria Bagus | - |
| dc.contributor.author | HAMDANI, Mayssa | - |
| dc.contributor.author | YASAR, Ansar | - |
| dc.contributor.author | Li, Li | - |
| dc.date.accessioned | 2026-01-15T11:13:41Z | - |
| dc.date.available | 2026-01-15T11:13:41Z | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-12-15T11:04:53Z | - |
| dc.identifier.citation | Transportation Research Procedia, 91 , p. 219 -226 | - |
| dc.identifier.uri | http://hdl.handle.net/1942/48116 | - |
| dc.description.abstract | Despite growing interest in traffic violation prediction, there is a lack of comprehensive survey research on this topic. A systematic survey is essential to understand the current state-of-the-art methodologies and to identify promising directions for future work. This paper surveys research on traffic violation prediction from the past five years, with a particular focus on machine learning and deep learning approaches. It provides an in-depth analysis of model architectures, data characteristics, and the types of traffic violations addressed in existing studies. In addition, this survey highlights current challenges, underrepresented violation types, and methodological best practices. Finally, it explores possible opportunities for future research, including possible integration with other domains such as gamified intervention. | - |
| dc.description.sponsorship | VITRONIC Research Chair | - |
| dc.language.iso | en | - |
| dc.publisher | Elsevier | - |
| dc.subject.other | Survey paper | - |
| dc.subject.other | Traffic violation prediction | - |
| dc.subject.other | Deep learning | - |
| dc.subject.other | Machine learning | - |
| dc.title | A survey on traffic violations prediction with deep learning | - |
| dc.type | Journal Contribution | - |
| local.bibliographicCitation.authors | Petrović, Marjana | - |
| local.bibliographicCitation.conferencedate | 2025, December 11-12 | - |
| local.bibliographicCitation.conferencename | The Science and Development of Transport - TRANSCODE 2025 | - |
| local.bibliographicCitation.conferenceplace | Zagreb | - |
| dc.identifier.epage | 226 | - |
| dc.identifier.spage | 219 | - |
| dc.identifier.volume | 91 | - |
| local.bibliographicCitation.jcat | A1 | - |
| local.type.refereed | Refereed | - |
| local.type.specified | Article | - |
| dc.identifier.doi | 10.1016/j.trpro.2025.10.029 | - |
| dc.identifier.eissn | - | |
| local.provider.type | - | |
| local.uhasselt.international | yes | - |
| item.fulltext | With Fulltext | - |
| item.contributor | WICAKSONO, Satria Bagus | - |
| item.contributor | HAMDANI, Mayssa | - |
| item.contributor | YASAR, Ansar | - |
| item.contributor | Li, Li | - |
| item.accessRights | Open Access | - |
| item.fullcitation | WICAKSONO, Satria Bagus; HAMDANI, Mayssa; YASAR, Ansar & Li, Li (2025) A survey on traffic violations prediction with deep learning. In: Transportation Research Procedia, 91 , p. 219 -226. | - |
| crisitem.journal.issn | 2352-1465 | - |
| Appears in Collections: | Research publications | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 1-s2.0-S2352146525006908-main (1).pdf | Published version | 352.61 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.