Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/48116
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorYasar, Ansar-
dc.contributor.authorWICAKSONO, Satria Bagus-
dc.contributor.authorHAMDANI, Mayssa-
dc.contributor.authorYASAR, Ansar-
dc.contributor.authorLi, Li-
dc.date.accessioned2026-01-15T11:13:41Z-
dc.date.available2026-01-15T11:13:41Z-
dc.date.issued2025-
dc.date.submitted2025-12-15T11:04:53Z-
dc.identifier.citationTransportation Research Procedia, 91 , p. 219 -226-
dc.identifier.urihttp://hdl.handle.net/1942/48116-
dc.description.abstractDespite growing interest in traffic violation prediction, there is a lack of comprehensive survey research on this topic. A systematic survey is essential to understand the current state-of-the-art methodologies and to identify promising directions for future work. This paper surveys research on traffic violation prediction from the past five years, with a particular focus on machine learning and deep learning approaches. It provides an in-depth analysis of model architectures, data characteristics, and the types of traffic violations addressed in existing studies. In addition, this survey highlights current challenges, underrepresented violation types, and methodological best practices. Finally, it explores possible opportunities for future research, including possible integration with other domains such as gamified intervention.-
dc.description.sponsorshipVITRONIC Research Chair-
dc.language.isoen-
dc.publisherElsevier-
dc.subject.otherSurvey paper-
dc.subject.otherTraffic violation prediction-
dc.subject.otherDeep learning-
dc.subject.otherMachine learning-
dc.titleA survey on traffic violations prediction with deep learning-
dc.typeJournal Contribution-
local.bibliographicCitation.authorsPetrović, Marjana-
local.bibliographicCitation.conferencedate2025, December 11-12-
local.bibliographicCitation.conferencenameThe Science and Development of Transport - TRANSCODE 2025-
local.bibliographicCitation.conferenceplaceZagreb-
dc.identifier.epage226-
dc.identifier.spage219-
dc.identifier.volume91-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1016/j.trpro.2025.10.029-
dc.identifier.eissn-
local.provider.typePdf-
local.uhasselt.internationalyes-
item.fulltextWith Fulltext-
item.contributorWICAKSONO, Satria Bagus-
item.contributorHAMDANI, Mayssa-
item.contributorYASAR, Ansar-
item.contributorLi, Li-
item.accessRightsOpen Access-
item.fullcitationWICAKSONO, Satria Bagus; HAMDANI, Mayssa; YASAR, Ansar & Li, Li (2025) A survey on traffic violations prediction with deep learning. In: Transportation Research Procedia, 91 , p. 219 -226.-
crisitem.journal.issn2352-1465-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
1-s2.0-S2352146525006908-main (1).pdfPublished version352.61 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.