Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/5012
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDUMORTIER, Freddy-
dc.contributor.authorLI, Chengzhi-
dc.date.accessioned2007-12-20T15:54:46Z-
dc.date.available2007-12-20T15:54:46Z-
dc.date.issued2001-
dc.identifier.citationJournal of differential equations, 175(2). p. 209-243-
dc.identifier.issn0022-0396-
dc.identifier.urihttp://hdl.handle.net/1942/5012-
dc.description.abstractThe paper deals with Lienard equations of the form x = y, y = P(x) + yQ(x) with P and Q polynomials of degree respectively 3 and 2. Attention goes to perturbations of the Hamiltonian vector field with an elliptic Hamiltonian of degree 4, exhibiting a cuspidal loop. It is proven that the least upper bound for the number of zeros of the related elliptic integral is four, and this upper bound is a sharp one. This permits to prove the existence of Lienard equations of type (3, 2) with at least four limit cycles. The paper also contains a complete result on the respective number of "small" and "large" limit cycles-
dc.language.isoen-
dc.publisherACADEMIC PRESS INC-
dc.subject.otherCRITICAL-POINTS; NUMBER; PERIOD-
dc.titlePerturbations from an elliptic Hamiltonian of degree four - II. Cuspidal loop-
dc.typeJournal Contribution-
dc.identifier.epage243-
dc.identifier.issue2-
dc.identifier.spage209-
dc.identifier.volume175-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1006/jdeq.2000.3978-
dc.identifier.isi000171278800002-
item.accessRightsClosed Access-
item.validationecoom 2002-
item.contributorDUMORTIER, Freddy-
item.contributorLI, Chengzhi-
item.fullcitationDUMORTIER, Freddy & LI, Chengzhi (2001) Perturbations from an elliptic Hamiltonian of degree four - II. Cuspidal loop. In: Journal of differential equations, 175(2). p. 209-243.-
item.fulltextNo Fulltext-
crisitem.journal.issn0022-0396-
crisitem.journal.eissn1090-2732-
Appears in Collections:Research publications
Show simple item record

SCOPUSTM   
Citations

96
checked on Sep 7, 2025

WEB OF SCIENCETM
Citations

98
checked on Sep 10, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.