Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/5012
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDUMORTIER, Freddy-
dc.contributor.authorLI, Chengzhi-
dc.date.accessioned2007-12-20T15:54:46Z-
dc.date.available2007-12-20T15:54:46Z-
dc.date.issued2001-
dc.identifier.citationJournal of differential equations, 175(2). p. 209-243-
dc.identifier.issn0022-0396-
dc.identifier.urihttp://hdl.handle.net/1942/5012-
dc.description.abstractThe paper deals with Lienard equations of the form x = y, y = P(x) + yQ(x) with P and Q polynomials of degree respectively 3 and 2. Attention goes to perturbations of the Hamiltonian vector field with an elliptic Hamiltonian of degree 4, exhibiting a cuspidal loop. It is proven that the least upper bound for the number of zeros of the related elliptic integral is four, and this upper bound is a sharp one. This permits to prove the existence of Lienard equations of type (3, 2) with at least four limit cycles. The paper also contains a complete result on the respective number of "small" and "large" limit cycles-
dc.language.isoen-
dc.publisherACADEMIC PRESS INC-
dc.subject.otherCRITICAL-POINTS; NUMBER; PERIOD-
dc.titlePerturbations from an elliptic Hamiltonian of degree four - II. Cuspidal loop-
dc.typeJournal Contribution-
dc.identifier.epage243-
dc.identifier.issue2-
dc.identifier.spage209-
dc.identifier.volume175-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1006/jdeq.2000.3978-
dc.identifier.isi000171278800002-
item.contributorDUMORTIER, Freddy-
item.contributorLI, Chengzhi-
item.fullcitationDUMORTIER, Freddy & LI, Chengzhi (2001) Perturbations from an elliptic Hamiltonian of degree four - II. Cuspidal loop. In: Journal of differential equations, 175(2). p. 209-243.-
item.accessRightsClosed Access-
item.fulltextNo Fulltext-
item.validationecoom 2002-
crisitem.journal.issn0022-0396-
crisitem.journal.eissn1090-2732-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.