Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/5743Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Le Bruyn, L. | - |
| dc.contributor.author | VAN DEN BERGH, Michel | - |
| dc.date.accessioned | 2007-12-20T16:01:39Z | - |
| dc.date.available | 2007-12-20T16:01:39Z | - |
| dc.date.issued | 1991 | - |
| dc.identifier.citation | Linear algebra and its applications, 157. p. 217-234 | - |
| dc.identifier.uri | http://hdl.handle.net/1942/5743 | - |
| dc.description.abstract | Cellular automata are systems evolving on lattices according to a local transition rule. In this paper we present an algebraic formalism for dealing with cellular automata whose local transition rule satisfies an additivity property. We discuss the phenomenon of self-replication and its connection with higher-order cellular automata and the state transition graph. | - |
| dc.language.iso | en | - |
| dc.title | Algebraic properties of linear cellular automata | - |
| dc.type | Journal Contribution | - |
| dc.identifier.epage | 234 | - |
| dc.identifier.spage | 217 | - |
| dc.identifier.volume | 157 | - |
| local.type.specified | Article | - |
| dc.bibliographicCitation.oldjcat | - | |
| dc.identifier.doi | 10.1016/0024-3795(91)90116-E | - |
| item.contributor | Le Bruyn, L. | - |
| item.contributor | VAN DEN BERGH, Michel | - |
| item.fullcitation | Le Bruyn, L. & VAN DEN BERGH, Michel (1991) Algebraic properties of linear cellular automata. In: Linear algebra and its applications, 157. p. 217-234. | - |
| item.fulltext | No Fulltext | - |
| item.accessRights | Closed Access | - |
| Appears in Collections: | Research publications | |
SCOPUSTM
Citations
19
checked on Feb 5, 2026
WEB OF SCIENCETM
Citations
14
checked on Feb 9, 2026
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.