Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/5743
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLe Bruyn, L.-
dc.contributor.authorVAN DEN BERGH, Michel-
dc.date.accessioned2007-12-20T16:01:39Z-
dc.date.available2007-12-20T16:01:39Z-
dc.date.issued1991-
dc.identifier.citationLinear algebra and its applications, 157. p. 217-234-
dc.identifier.urihttp://hdl.handle.net/1942/5743-
dc.description.abstractCellular automata are systems evolving on lattices according to a local transition rule. In this paper we present an algebraic formalism for dealing with cellular automata whose local transition rule satisfies an additivity property. We discuss the phenomenon of self-replication and its connection with higher-order cellular automata and the state transition graph.-
dc.language.isoen-
dc.titleAlgebraic properties of linear cellular automata-
dc.typeJournal Contribution-
dc.identifier.epage234-
dc.identifier.spage217-
dc.identifier.volume157-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcat-
dc.identifier.doi10.1016/0024-3795(91)90116-E-
item.fulltextNo Fulltext-
item.contributorLe Bruyn, L.-
item.contributorVAN DEN BERGH, Michel-
item.fullcitationLe Bruyn, L. & VAN DEN BERGH, Michel (1991) Algebraic properties of linear cellular automata. In: Linear algebra and its applications, 157. p. 217-234.-
item.accessRightsClosed Access-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.