Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBRIJS, Tom-
dc.contributor.authorKARLIS, Dimitris-
dc.contributor.authorSWINNEN, Gilbert-
dc.contributor.authorVANHOOF, Koen-
dc.contributor.authorWETS, Geert-
dc.description.abstractThis paper describes a multivariate Poisson mixture model for clustering supermarket shoppers based on their purchase frequency in a set of product categories. The multivariate nature of the model accounts for cross-selling effects that may exist between the purchases made in different product categories. However, because of computational difficulties, most multivariate approaches limit the covariance structure of the model by including just one common interaction term Although this reduces the ..-
dc.relation.ispartofseriesITEO research paper; 02/01-
dc.titleTuning the multivariate Poisson mixture model for clustering supermarket shoppers-
dc.typeResearch Report-
dc.description.notesResearch network Interuniversity Attraction Pole (P24/5) : Statistical Modelling and Inference for Complex Data Structures-
item.contributorBRIJS, Tom-
item.contributorWETS, Geert-
item.contributorSWINNEN, Gilbert-
item.contributorKARLIS, Dimitris-
item.contributorVANHOOF, Koen-
item.fulltextNo Fulltext-
item.fullcitationBRIJS, Tom; KARLIS, Dimitris; SWINNEN, Gilbert; VANHOOF, Koen & WETS, Geert (2002) Tuning the multivariate Poisson mixture model for clustering supermarket shoppers.-
item.accessRightsClosed Access-
Appears in Collections:Research publications
Show simple item record

Page view(s)

checked on Jun 28, 2022

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.