Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/5893
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMARTIN, Jan-
dc.contributor.authorde Oliveira, Glênisson-
dc.date.accessioned2007-12-20T16:03:01Z-
dc.date.available2007-12-20T16:03:01Z-
dc.date.issued1999-
dc.identifier.citationJournal of chemical physics, 111(5). p. 1843-1856-
dc.identifier.issn0021-9606-
dc.identifier.urihttp://hdl.handle.net/1942/5893-
dc.description.abstractTwo new schemes for computing molecular total atomization energies (TAEs) and/or heats of formation (Delta H-f(degrees)) of first- and second-row compounds to very high accuracy are presented. The more affordable scheme, W1 (Weizmann-1) theory, yields a mean absolute error of 0.30 kcal/mol and includes only a single, molecule-independent, empirical parameter. It requires CCSD (coupled cluster with all single and double substitutions) calculations in spdf and spdfg basis sets, while CCSD(T) (i.e., CCSD with a quasiperturbative treatment of connected triple excitations) calculations are only required in spd and spdf basis sets. On workstation computers and using conventional coupled cluster algorithms, systems as large as benzene can be treated, while larger systems are feasible using direct coupled cluster methods. The more rigorous scheme, W2 (Weizmann-2) theory, contains no empirical parameters at all and yields a mean absolute error of 0.23 kcal/mol, which is lowered to 0.18 kcal/mol for molecules dominated by dynamical correlation. It involves CCSD calculations in spdfg and spdfgh basis sets and CCSD(T) calculations in spdf and spdfg basis sets. On workstation computers, molecules with up to three heavy atoms can be treated using conventional coupled cluster algorithms, while larger systems can still be treated using a direct CCSD code. Both schemes include corrections for scalar relativistic effects, which are found to be vital for accurate results on second-row compounds. (C) 1999 American Institute of Physics.-
dc.language.isoen-
dc.publisherAMER INST PHYSICS-
dc.subject.otherBASIS-SET CONVERGENCE; CORRELATED MOLECULAR CALCULATIONS; DENSITY-FUNCTIONAL THEORY; GAUSSIAN-BASIS SETS; TOTAL ATOMIZATION ENERGIES; SMALL POLYATOMIC-MOLECULES; COUPLED-CLUSTER SINGLES; G2 TEST SET; WAVE-FUNCTIONS; HARMONIC FREQUENCIES-
dc.titleTowards standard methods for benchmark quality ab initio thermochemistry: W1 and W2 theory-
dc.typeJournal Contribution-
dc.identifier.epage1856-
dc.identifier.issue5-
dc.identifier.spage1843-
dc.identifier.volume111-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1063/1.479454-
dc.identifier.isi000081698700008-
item.fullcitationMARTIN, Jan & de Oliveira, Glênisson (1999) Towards standard methods for benchmark quality ab initio thermochemistry: W1 and W2 theory. In: Journal of chemical physics, 111(5). p. 1843-1856.-
item.accessRightsClosed Access-
item.contributorMARTIN, Jan-
item.contributorde Oliveira, Glênisson-
item.fulltextNo Fulltext-
Appears in Collections:Research publications
Show simple item record

SCOPUSTM   
Citations

819
checked on Sep 5, 2020

WEB OF SCIENCETM
Citations

940
checked on Apr 14, 2024

Page view(s)

98
checked on Nov 7, 2023

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.