Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/6035
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVAN DEN BROECK, Christian-
dc.date.accessioned2007-12-20T16:04:21Z-
dc.date.available2007-12-20T16:04:21Z-
dc.date.issued1997-
dc.identifier.citationStochastic Dynamics, p. 6-14.-
dc.identifier.isbn978-3-540-62893-4-
dc.identifier.urihttp://hdl.handle.net/1942/6035-
dc.description.abstractWe illustrate the Stratonovich interpretation for a stochastic differential equation on the basis of simple examples. The short and long-time behavior of such equations are contrasted with each other. We formulate a mean field theory for spatially distributed models with multiplicative noise, and present a simple model that displays a noise-induced phase transition.-
dc.language.isoen-
dc.publisherSpringer Berlin / Heidelberg-
dc.relation.ispartofseriesLecture notes in physics-
dc.titleFrom Stratonovich calculus to noise-induced phase transitions-
dc.typeBook Section-
dc.identifier.epage14-
dc.identifier.spage6-
dc.identifier.volume484-
local.type.specifiedBook Section-
local.relation.ispartofseriesnr484-
dc.bibliographicCitation.oldjcatB2-
dc.identifier.doi10.1007/BFb0105594-
local.bibliographicCitation.btitleStochastic Dynamics-
item.accessRightsClosed Access-
item.fullcitationVAN DEN BROECK, Christian (1997) From Stratonovich calculus to noise-induced phase transitions. In: Stochastic Dynamics, p. 6-14..-
item.fulltextNo Fulltext-
item.contributorVAN DEN BROECK, Christian-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.