Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/6292
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHEIJNEN, Bart-
dc.contributor.authorJANSSENS, Gerrit K.-
dc.date.accessioned2007-12-20T16:06:44Z-
dc.date.available2007-12-20T16:06:44Z-
dc.date.issued1995-
dc.identifier.citationJournal of computational and applied mathematics, 64(1-2). p. 149-161-
dc.identifier.urihttp://hdl.handle.net/1942/6292-
dc.description.abstractContrary to their infinite capacity counterparts, the moments of the distribution of the number in a M/G/1/K-system cannot be determined by means of the Pollaczek-Khinchine equation. If the finite capacity K is small the distribution under study can be obtained as the steady-state probability distribution related to the transition probability matrix. For larger capacities, we derive upper and lower bounds on the mean system size in an M/G/1/K-queue for which the first two moments of the number in the system of the infinite capacity queue are known. Numerical examples for the M/D/1/1-and M/D/1/3-queues are given.-
dc.language.isoen-
dc.publisherElsevier Science B.V.-
dc.titleBounds for the mean system size in M/G/1/K-queues-
dc.typeJournal Contribution-
dc.identifier.epage161-
dc.identifier.issue1-2-
dc.identifier.spage149-
dc.identifier.volume64-
dc.bibliographicCitation.oldjcat-
dc.identifier.doi10.1016/0377-0427(95)00012-7-
item.contributorHEIJNEN, Bart-
item.contributorJANSSENS, Gerrit K.-
item.fullcitationHEIJNEN, Bart & JANSSENS, Gerrit K. (1995) Bounds for the mean system size in M/G/1/K-queues. In: Journal of computational and applied mathematics, 64(1-2). p. 149-161.-
item.fulltextNo Fulltext-
item.accessRightsClosed Access-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.