Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/6292
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | HEIJNEN, Bart | - |
dc.contributor.author | JANSSENS, Gerrit K. | - |
dc.date.accessioned | 2007-12-20T16:06:44Z | - |
dc.date.available | 2007-12-20T16:06:44Z | - |
dc.date.issued | 1995 | - |
dc.identifier.citation | Journal of computational and applied mathematics, 64(1-2). p. 149-161 | - |
dc.identifier.uri | http://hdl.handle.net/1942/6292 | - |
dc.description.abstract | Contrary to their infinite capacity counterparts, the moments of the distribution of the number in a M/G/1/K-system cannot be determined by means of the Pollaczek-Khinchine equation. If the finite capacity K is small the distribution under study can be obtained as the steady-state probability distribution related to the transition probability matrix. For larger capacities, we derive upper and lower bounds on the mean system size in an M/G/1/K-queue for which the first two moments of the number in the system of the infinite capacity queue are known. Numerical examples for the M/D/1/1-and M/D/1/3-queues are given. | - |
dc.language.iso | en | - |
dc.publisher | Elsevier Science B.V. | - |
dc.title | Bounds for the mean system size in M/G/1/K-queues | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 161 | - |
dc.identifier.issue | 1-2 | - |
dc.identifier.spage | 149 | - |
dc.identifier.volume | 64 | - |
dc.bibliographicCitation.oldjcat | - | |
dc.identifier.doi | 10.1016/0377-0427(95)00012-7 | - |
item.contributor | HEIJNEN, Bart | - |
item.contributor | JANSSENS, Gerrit K. | - |
item.fullcitation | HEIJNEN, Bart & JANSSENS, Gerrit K. (1995) Bounds for the mean system size in M/G/1/K-queues. In: Journal of computational and applied mathematics, 64(1-2). p. 149-161. | - |
item.fulltext | No Fulltext | - |
item.accessRights | Closed Access | - |
Appears in Collections: | Research publications |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.