Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/6310
Full metadata record
DC FieldValueLanguage
dc.contributor.authorROUSSEAU, Ronald-
dc.date.accessioned2007-12-20T16:06:53Z-
dc.date.available2007-12-20T16:06:53Z-
dc.date.issued1994-
dc.identifier.citationInformation processing and management, 30(2). p. 267-277-
dc.identifier.urihttp://hdl.handle.net/1942/6310-
dc.description.abstractIt is shown that generalized Leimkuhler functions give proper fits to a large variety of Bradford curves, including those exhibiting a so-called Groos droop or a rising tail.-
dc.language.isoen-
dc.publisherElsevier Ltd.-
dc.titleBradford curves-
dc.typeJournal Contribution-
dc.identifier.epage277-
dc.identifier.issue2-
dc.identifier.spage267-
dc.identifier.volume30-
dc.bibliographicCitation.oldjcat-
dc.identifier.doi10.1016/0306-4573(94)90069-8-
item.fulltextNo Fulltext-
item.fullcitationROUSSEAU, Ronald (1994) Bradford curves. In: Information processing and management, 30(2). p. 267-277.-
item.accessRightsClosed Access-
item.contributorROUSSEAU, Ronald-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.