Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/6310
Full metadata record
DC FieldValueLanguage
dc.contributor.authorROUSSEAU, Ronald-
dc.date.accessioned2007-12-20T16:06:53Z-
dc.date.available2007-12-20T16:06:53Z-
dc.date.issued1994-
dc.identifier.citationInformation processing and management, 30(2). p. 267-277-
dc.identifier.urihttp://hdl.handle.net/1942/6310-
dc.description.abstractIt is shown that generalized Leimkuhler functions give proper fits to a large variety of Bradford curves, including those exhibiting a so-called Groos droop or a rising tail.-
dc.language.isoen-
dc.publisherElsevier Ltd.-
dc.titleBradford curves-
dc.typeJournal Contribution-
dc.identifier.epage277-
dc.identifier.issue2-
dc.identifier.spage267-
dc.identifier.volume30-
dc.bibliographicCitation.oldjcat-
dc.identifier.doi10.1016/0306-4573(94)90069-8-
item.fulltextNo Fulltext-
item.fullcitationROUSSEAU, Ronald (1994) Bradford curves. In: Information processing and management, 30(2). p. 267-277.-
item.contributorROUSSEAU, Ronald-
item.accessRightsClosed Access-
Appears in Collections:Research publications
Show simple item record

SCOPUSTM   
Citations

15
checked on Oct 20, 2025

WEB OF SCIENCETM
Citations

18
checked on Oct 21, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.