Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/6945
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Calders, Toon | - |
dc.contributor.author | GOETHALS, Bart | - |
dc.date.accessioned | 2007-12-20T16:11:43Z | - |
dc.date.available | 2007-12-20T16:11:43Z | - |
dc.date.issued | 2007 | - |
dc.identifier.citation | Data mining and knowledge discovery, 14(1). p. 171-206 | - |
dc.identifier.issn | 1384-5810 | - |
dc.identifier.uri | http://hdl.handle.net/1942/6945 | - |
dc.description.abstract | All frequent itemset mining algorithms rely heavily on the monotonicity principle for pruning. This principle allows for excluding candidate itemsets from the expensive counting phase. In this paper, we present sound and complete deduction rules to derive bounds on the support of an itemset. Based on these deduction rules, we construct a condensed representation of all frequent itemsets, by removing those itemsets for which the support can be derived, resulting in the so called Non-Derivable Itemsets (NDI) representation. We also present connections between our proposal and recent other proposals for condensed representations of frequent itemsets. Experiments on real-life datasets show the effectiveness of the NDI representation, making the search for frequent non-derivable itemsets a useful and tractable alternative to mining all frequent itemsets | - |
dc.language.iso | en | - |
dc.publisher | SPRINGER | - |
dc.title | Non-derivable itemset mining | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 206 | - |
dc.identifier.issue | 1 | - |
dc.identifier.spage | 171 | - |
dc.identifier.volume | 14 | - |
local.bibliographicCitation.jcat | A1 | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.bibliographicCitation.oldjcat | A1 | - |
local.class | dsPublValOverrule/no_publishing_delay | - |
dc.identifier.doi | 10.1007/s10618-006-0054-6 | - |
dc.identifier.isi | 000244483000006 | - |
item.fulltext | With Fulltext | - |
item.contributor | Calders, Toon | - |
item.contributor | GOETHALS, Bart | - |
item.fullcitation | Calders, Toon & GOETHALS, Bart (2007) Non-derivable itemset mining. In: Data mining and knowledge discovery, 14(1). p. 171-206. | - |
item.accessRights | Closed Access | - |
crisitem.journal.issn | 1384-5810 | - |
crisitem.journal.eissn | 1573-756X | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
non derivable.pdf | 415.51 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.