Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/7145
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLINDSEY, James-
dc.contributor.authorLAMBERT, Philippe-
dc.date.accessioned2007-12-20T16:13:29Z-
dc.date.available2007-12-20T16:13:29Z-
dc.date.issued1995-
dc.identifier.citationJournal of statistical planning and interference, 47(1-2). p. 129-139-
dc.identifier.urihttp://hdl.handle.net/1942/7145-
dc.description.abstractThe dynamic generalized linear model for non-normal data is extended for use in repeated measurements, when series of observations are available for more than one individual. Examples are given for count and duration data.-
dc.language.isoen-
dc.publisherElsevier Science B.V.-
dc.subject.otherAutoregression; Dynamic generalized linear model; Kalman filter; Longitudinal data; Overdispersion; Repeated measurements; State space model-
dc.titleDynamic generalized linear models and repeated measurements-
dc.typeJournal Contribution-
dc.identifier.epage139-
dc.identifier.issue1-2-
dc.identifier.spage129-
dc.identifier.volume47-
dc.bibliographicCitation.oldjcat-
dc.identifier.doi10.1016/0378-3758(94)00126-G-
item.contributorLINDSEY, James-
item.contributorLAMBERT, Philippe-
item.fullcitationLINDSEY, James & LAMBERT, Philippe (1995) Dynamic generalized linear models and repeated measurements. In: Journal of statistical planning and interference, 47(1-2). p. 129-139.-
item.accessRightsClosed Access-
item.fulltextNo Fulltext-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.