Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/721
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGEERTS, Floris-
dc.date.accessioned2005-04-14T09:39:42Z-
dc.date.available2005-04-14T09:39:42Z-
dc.date.issued2003-
dc.identifier.citationDiscrete and Computational Geometry, 30(4). p. 607-622-
dc.identifier.issn0179-5376-
dc.identifier.urihttp://hdl.handle.net/1942/721-
dc.description.abstractWe show that there is a query expressible in first-order logic over the reals that returns, on any given semi-algebraic set A, for every point, a radius around which A is conical in every small enough box. We obtain this result by combining results from differential topology and real algebraic geometry, with recent algorithmic results by Rannou.-
dc.format.extent281837 bytes-
dc.format.mimetypeapplication/pdf-
dc.language.isoen-
dc.publisherSpringer-
dc.titleExpressing the box cone radius in the relational calculus with real polynomial constraints-
dc.typeJournal Contribution-
dc.identifier.epage622-
dc.identifier.issue4-
dc.identifier.spage607-
dc.identifier.volume30-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1007/s00454-003-0770-2-
dc.identifier.isi000186370900006-
item.contributorGEERTS, Floris-
item.fullcitationGEERTS, Floris (2003) Expressing the box cone radius in the relational calculus with real polynomial constraints. In: Discrete and Computational Geometry, 30(4). p. 607-622.-
item.accessRightsClosed Access-
item.fulltextWith Fulltext-
item.validationecoom 2004-
crisitem.journal.issn0179-5376-
crisitem.journal.eissn1432-0444-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
expressing.pdf275.23 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.