Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/734
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | TUYLS, Karl | - |
dc.contributor.author | Lenaerts, Tom | - |
dc.contributor.author | Manderick, Bernard | - |
dc.date.accessioned | 2005-04-20T06:56:39Z | - |
dc.date.available | 2005-04-20T06:56:39Z | - |
dc.date.issued | 2004 | - |
dc.identifier.citation | Synthese, 139(2). p. 297-330 | - |
dc.identifier.issn | 0039-7857 | - |
dc.identifier.uri | http://hdl.handle.net/1942/734 | - |
dc.description.abstract | In this paper we revise Reinforcement Learning andadaptiveness in Multi-Agent Systems from an EvolutionaryGame Theoretic perspective. More precisely we show thereis a triangular relation between the fields of Multi-AgentSystems, Reinforcement Learning and Evolutionary Game Theory.We illustrate how these new insights can contribute to a betterunderstanding of learning in MAS and to new improved learningalgorithms. All three fields are introduced in a self- containedmanner. Each relation is discussed in detail with thenecessary background information to understand it, alongwith major references to relevant work | - |
dc.language.iso | en | - |
dc.publisher | Springer | - |
dc.title | An Evolutionary Game Theoretic Perspective on Learning in Multi-Agent Systems | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 330 | - |
dc.identifier.issue | 2 | - |
dc.identifier.spage | 297 | - |
dc.identifier.volume | 139 | - |
local.bibliographicCitation.jcat | A1 | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.bibliographicCitation.oldjcat | A1 | - |
dc.identifier.doi | 10.1023/B:SYNT.0000024908.89191.f1 | - |
dc.identifier.isi | 000220957200006 | - |
item.fulltext | No Fulltext | - |
item.contributor | TUYLS, Karl | - |
item.contributor | Lenaerts, Tom | - |
item.contributor | Manderick, Bernard | - |
item.fullcitation | TUYLS, Karl; Lenaerts, Tom & Manderick, Bernard (2004) An Evolutionary Game Theoretic Perspective on Learning in Multi-Agent Systems. In: Synthese, 139(2). p. 297-330. | - |
item.accessRights | Closed Access | - |
crisitem.journal.issn | 0039-7857 | - |
crisitem.journal.eissn | 1573-0964 | - |
Appears in Collections: | Research publications |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.