Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/734
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTUYLS, Karl-
dc.contributor.authorLenaerts, Tom-
dc.contributor.authorManderick, Bernard-
dc.date.accessioned2005-04-20T06:56:39Z-
dc.date.available2005-04-20T06:56:39Z-
dc.date.issued2004-
dc.identifier.citationSynthese, 139(2). p. 297-330-
dc.identifier.issn0039-7857-
dc.identifier.urihttp://hdl.handle.net/1942/734-
dc.description.abstractIn this paper we revise Reinforcement Learning andadaptiveness in Multi-Agent Systems from an EvolutionaryGame Theoretic perspective. More precisely we show thereis a triangular relation between the fields of Multi-AgentSystems, Reinforcement Learning and Evolutionary Game Theory.We illustrate how these new insights can contribute to a betterunderstanding of learning in MAS and to new improved learningalgorithms. All three fields are introduced in a self- containedmanner. Each relation is discussed in detail with thenecessary background information to understand it, alongwith major references to relevant work-
dc.language.isoen-
dc.publisherSpringer-
dc.titleAn Evolutionary Game Theoretic Perspective on Learning in Multi-Agent Systems-
dc.typeJournal Contribution-
dc.identifier.epage330-
dc.identifier.issue2-
dc.identifier.spage297-
dc.identifier.volume139-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1023/B:SYNT.0000024908.89191.f1-
dc.identifier.isi000220957200006-
item.fulltextNo Fulltext-
item.contributorTUYLS, Karl-
item.contributorLenaerts, Tom-
item.contributorManderick, Bernard-
item.fullcitationTUYLS, Karl; Lenaerts, Tom & Manderick, Bernard (2004) An Evolutionary Game Theoretic Perspective on Learning in Multi-Agent Systems. In: Synthese, 139(2). p. 297-330.-
item.accessRightsClosed Access-
crisitem.journal.issn0039-7857-
crisitem.journal.eissn1573-0964-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.