Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/7366
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWAUTERS, Paul-
dc.date.accessioned2007-12-20T16:15:32Z-
dc.date.available2007-12-20T16:15:32Z-
dc.date.issued1999-
dc.identifier.citationJournal of algebra, 214. p. 448-457-
dc.identifier.issn0021-8693-
dc.identifier.urihttp://hdl.handle.net/1942/7366-
dc.description.abstractLet G be a polycyclic-by-finite group such that Delta(G) is torsion-free abelian and It a field. Denote by S a multiplicatively closed set of nun-zero central elements of K[G]; if K is an absolute field assume that S contains an element not in K. Our main result is when the localization K[G](S) is a primitive ring. This turns out to be equivalent to the following three conditions: (1) A = K[S, S-1] is a G-domain, (2) (Q(ZK[G]) : Q(A)) is finite, and (3) J(K[G](S)) = 0. In case G is not abelian-by-finite, condition (3) is not needed. hn immediate consequence is the following. Let K be a field; in ease K is an absolute field assume that Delta(G) not equal 1. Then K[G](ZK[G]) is a primitive ring. In the final section a class of examples is constructed. (C) 1999 Academic Press.-
dc.language.isoen-
dc.publisherACADEMIC PRESS INC-
dc.titlePrimitive localizations of group algebras of polycyclic-by-finte groups-
dc.typeJournal Contribution-
dc.identifier.epage457-
dc.identifier.spage448-
dc.identifier.volume214-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.isi000079685800004-
item.fulltextNo Fulltext-
item.validationecoom 2000-
item.contributorWAUTERS, Paul-
item.fullcitationWAUTERS, Paul (1999) Primitive localizations of group algebras of polycyclic-by-finte groups. In: Journal of algebra, 214. p. 448-457.-
item.accessRightsClosed Access-
Appears in Collections:Research publications
Show simple item record

Page view(s)

14
checked on Jul 1, 2022

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.