Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/7366
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWAUTERS, Paul-
dc.date.accessioned2007-12-20T16:15:32Z-
dc.date.available2007-12-20T16:15:32Z-
dc.date.issued1999-
dc.identifier.citationJournal of algebra, 214. p. 448-457-
dc.identifier.issn0021-8693-
dc.identifier.urihttp://hdl.handle.net/1942/7366-
dc.description.abstractLet G be a polycyclic-by-finite group such that Delta(G) is torsion-free abelian and It a field. Denote by S a multiplicatively closed set of nun-zero central elements of K[G]; if K is an absolute field assume that S contains an element not in K. Our main result is when the localization K[G](S) is a primitive ring. This turns out to be equivalent to the following three conditions: (1) A = K[S, S-1] is a G-domain, (2) (Q(ZK[G]) : Q(A)) is finite, and (3) J(K[G](S)) = 0. In case G is not abelian-by-finite, condition (3) is not needed. hn immediate consequence is the following. Let K be a field; in ease K is an absolute field assume that Delta(G) not equal 1. Then K[G](ZK[G]) is a primitive ring. In the final section a class of examples is constructed. (C) 1999 Academic Press.-
dc.language.isoen-
dc.publisherACADEMIC PRESS INC-
dc.titlePrimitive localizations of group algebras of polycyclic-by-finte groups-
dc.typeJournal Contribution-
dc.identifier.epage457-
dc.identifier.spage448-
dc.identifier.volume214-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.isi000079685800004-
item.accessRightsClosed Access-
item.fulltextNo Fulltext-
item.contributorWAUTERS, Paul-
item.fullcitationWAUTERS, Paul (1999) Primitive localizations of group algebras of polycyclic-by-finte groups. In: Journal of algebra, 214. p. 448-457.-
item.validationecoom 2000-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.