Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/7783
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWESTRA, Ronald-
dc.contributor.authorHOLLANDERS, Goele-
dc.contributor.authorBEX, Geert Jan-
dc.contributor.authorGYSSENS, Marc-
dc.contributor.authorTUYLS, Karl-
dc.date.accessioned2008-02-01T19:36:43Z-
dc.date.available2008-02-01T19:36:43Z-
dc.date.issued2007-
dc.identifier.citationAI COMMUNICATIONS, 20(4). p. 297-311-
dc.identifier.issn0921-7126-
dc.identifier.urihttp://hdl.handle.net/1942/7783-
dc.description.abstractIn this paper we study the potential of gene-protein interaction networks to store input-output patterns. The central question in this study concerns the memory capacity of a network of a given number of genes and proteins, which interact according to a linear state space model with external inputs. Here it is assumed that to a certain combination of inputs there exists an optimal state of the system, i.e., values of the gene expressions and protein levels, that has been attained externally, e.g., through evolutionary learning. Given such a set of learned optimal input-output patterns, the design question here is to find a sparse and hierarchical network structure for the gene-protein interactions and the gene-input couplings. This problem is formulated as an optimization problem in a linear programming setting. Numerical analysis shows that there are clear scale-invariant continuous second-order phase transitions for the network sparsity as the number of patterns increases. These phase transitions divide the system in three regions with different memory characteristics. It is possible to formulate simple scaling rules for the behavior of the network sparsity. Finally, numerical experiments show that these patterns are stable within a certain finite range around the patterns.-
dc.format.extent850277 bytes-
dc.format.mimetypeapplication/pdf-
dc.language.isoen-
dc.publisherIOS PRESS-
dc.subject.othergene-protein networks, pattern memory, linear state space models, phase transitions, information entropy-
dc.titleThe pattern memory of gene-protein networks-
dc.typeJournal Contribution-
local.bibliographicCitation.conferencedateBristol, ENGLAND-
local.bibliographicCitation.conferencenameWorkshop on Network Analysis in Natural Sciences and Engineering-
dc.identifier.epage311-
dc.identifier.issue4-
dc.identifier.spage297-
dc.identifier.volume20-
local.format.pages15-
local.bibliographicCitation.jcatA1-
dc.description.notesMaastricht Univ, Dept Math & Comp Sci, Maastricht, Netherlands. Transnatl Univ Limburg, Maastricht, Netherlands. Hasselt Univ, Dept Math Phys & Comp Sci, Hasselt, Belgium. Transnatl Univ Limburg, Hasselt, Belgium.Westra, RL, Maastricht Univ, Dept Math & Comp Sci, Maastricht, Netherlands.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.isi000251720200007-
dc.identifier.urlhttp://iospress.metapress.com/openurl.asp?genre=article&issn=0921-7126&volume=20&issue=4&spage=297-
item.fulltextWith Fulltext-
item.validationecoom 2009-
item.contributorHOLLANDERS, Goele-
item.contributorBEX, Geert Jan-
item.contributorTUYLS, Karl-
item.contributorWESTRA, Ronald-
item.contributorGYSSENS, Marc-
item.fullcitationWESTRA, Ronald; HOLLANDERS, Goele; BEX, Geert Jan; GYSSENS, Marc & TUYLS, Karl (2007) The pattern memory of gene-protein networks. In: AI COMMUNICATIONS, 20(4). p. 297-311.-
item.accessRightsOpen Access-
crisitem.journal.issn0921-7126-
crisitem.journal.eissn1875-8452-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
aicom.pdfPostprint830.35 kBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

1
checked on Jul 1, 2022

Page view(s)

18
checked on Jul 1, 2022

Download(s)

4
checked on Jul 1, 2022

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.