Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/7797
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBIESEMANS, Leen-
dc.contributor.authorVANSTREELS, Kris-
dc.contributor.authorBRONGERSMA, Sywert-
dc.contributor.authorD'HAEN, Jan-
dc.contributor.authorDE CEUNINCK, Ward-
dc.contributor.authorD'OLIESLAEGER, Marc-
dc.date.accessioned2008-02-04T14:55:49Z-
dc.date.available2008-02-04T14:55:49Z-
dc.date.issued2007-
dc.identifier.citationRussell, SW & Mills, ME & Osaki, A & Yoda, T (Ed.) ADVANCED METALLIZATION CONFERENCE 2006 (AMC 2006). p. 453-458.-
dc.identifier.isbn978-1-55899-947-3-
dc.identifier.urihttp://hdl.handle.net/1942/7797-
dc.description.abstractDamascene Cu interconnects are increasingly used as electrical connections in integrated circuits. During fabrication and operation these interconnects are subjected to temperature variations. These thermal effects cause the different layers of a microelectronic device to undergo mechanical stresses due to differences in thermal coefficients. The same thermal effects can be generated by applying a sinusoidal alternating current (AC) to a sputtered interconnect. Thermal cycling due to joule heating of the interconnect will cause thermal fatigue damage. Our goal is to study this phenomenon on dual damascene Cu interconnects and to compare these results with direct current (DC) and bipolar pulsed DC stressed samples. The outcome of these experiments demonstrate that failure under DC, bipolar pulsed DC and sinusoidal AC arise in the same way and is not a result of thermal cycling, but diffusive mechanisms. These diffusive mechanisms can be slowed down by using a passivation layer on top of the interconnect and air gaps instead of a dielectric beside the line as showed during a test.-
dc.language.isoen-
dc.publisherMATERIALS RESEARCH SOCIETY-
dc.titleMicrostructural evolution of cu interconnect under AC, pulsed DC and DC current stress-
dc.typeProceedings Paper-
local.bibliographicCitation.authorsRussell, SW-
local.bibliographicCitation.authorsMills, ME-
local.bibliographicCitation.authorsOsaki, A-
local.bibliographicCitation.authorsYoda, T-
local.bibliographicCitation.conferencenameAdvanced Metallization Conference 2006-
dc.identifier.epage458-
dc.identifier.spage453-
local.format.pages6-
local.bibliographicCitation.jcatC1-
dc.description.notesHasselt Univ, Inst Mat Res, Diepenbeek, B-3590 Belgium.Biesemans, L, Hasselt Univ, Inst Mat Res, Wetenschapspk 1, Diepenbeek, B-3590 Belgium.-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
dc.bibliographicCitation.oldjcatC1-
dc.identifier.isi000245813300064-
local.bibliographicCitation.btitleADVANCED METALLIZATION CONFERENCE 2006 (AMC 2006)-
item.accessRightsClosed Access-
item.validationecoom 2008-
item.fulltextNo Fulltext-
item.fullcitationBIESEMANS, Leen; VANSTREELS, Kris; BRONGERSMA, Sywert; D'HAEN, Jan; DE CEUNINCK, Ward & D'OLIESLAEGER, Marc (2007) Microstructural evolution of cu interconnect under AC, pulsed DC and DC current stress. In: Russell, SW & Mills, ME & Osaki, A & Yoda, T (Ed.) ADVANCED METALLIZATION CONFERENCE 2006 (AMC 2006). p. 453-458..-
item.contributorBIESEMANS, Leen-
item.contributorVANSTREELS, Kris-
item.contributorBRONGERSMA, Sywert-
item.contributorD'HAEN, Jan-
item.contributorDE CEUNINCK, Ward-
item.contributorD'OLIESLAEGER, Marc-
Appears in Collections:Research publications
Show simple item record

WEB OF SCIENCETM
Citations

1
checked on Apr 16, 2024

Page view(s)

36
checked on Nov 7, 2023

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.