Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/7799
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDELVAUX, Lydia-
dc.date.accessioned2008-02-04T15:08:53Z-
dc.date.available2008-02-04T15:08:53Z-
dc.date.issued2007-
dc.identifier.citationALGEBRAS AND REPRESENTATION THEORY, 10. p. 533-554-
dc.identifier.issn1386-923X-
dc.identifier.urihttp://hdl.handle.net/1942/7799-
dc.description.abstractLet B be a regular multiplier Hopf algebra. Let A be an algebra with a non-degenerate multiplication such that A is a left B-module algebra and a left B-comodule algebra. By the use of the left action and the left coaction of B on A, we determine when a comultiplication on A makes A into a “B-admissible regular multiplier Hopf algebra.” If A is a B-admissible regular multiplier Hopf algebra, we prove that the smash product A # B is again a regular multiplier Hopf algebra. The comultiplication on A # B is a cotwisting (induced by the left coaction of B on A) of the given comultiplications on A and B. When we restrict to the framework of ordinary Hopf algebra theory, we recover Majid’s braided interpretation of Radford’s biproduct.-
dc.language.isoen-
dc.titleMultiplier Hopf Algebras in Categories and the Biproduct Construction-
dc.typeJournal Contribution-
dc.identifier.epage554-
dc.identifier.spage533-
dc.identifier.volume10-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1007/s10468-007-9053-6-
dc.identifier.isi000250372200002-
item.fulltextNo Fulltext-
item.contributorDELVAUX, Lydia-
item.fullcitationDELVAUX, Lydia (2007) Multiplier Hopf Algebras in Categories and the Biproduct Construction. In: ALGEBRAS AND REPRESENTATION THEORY, 10. p. 533-554.-
item.accessRightsClosed Access-
item.validationecoom 2008-
crisitem.journal.issn1386-923X-
crisitem.journal.eissn1572-9079-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.