Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/7801
Title: Hierarchical PCA decomposition of point clouds
Authors: FRANSENS, Jan 
VAN REETH, Frank 
Issue Date: 2007
Publisher: IEEE COMPUTER SOC
Source: Pollefeys, M & Daniilidis, K (Ed.) THIRD INTERNATIONAL SYMPOSIUM ON 3D DATA PROCESSING, VISUALIZATION, AND TRANSMISSION, PROCEEDINGS. p. 591-598.
Abstract: We present a hierarchical analysis technique for point clouds, based on Principal Component Analysis (PCA), a well known multivariate statistical method. The crux of the algorithm is a top-down planarity assessment of the underlying point data, after which individual planar patches are merged using a tree clustering technique. We will demonstrate how the results of this analysis are used as a preprocessing step for computer aided inspection of sheet metal folding, surface reconstruction and a hybrid point-polygon rendering algorithm.
Notes: Limburgs Univ Ctr, Expertise Ctr Digital Media, Diepenbeek, B-3590 Belgium.Fransens, J, Limburgs Univ Ctr, Expertise Ctr Digital Media, Univ Campus, Diepenbeek, B-3590 Belgium.
Keywords: PCA, point cloud analysis, minimum spanning tree, segmentation, hierarchical methods, surface reconstruction, CAD analysis, hybrid rendering
Document URI: http://hdl.handle.net/1942/7801
ISBN: 978-0-7695-2825-0
DOI: 10.1109/3DPVT.2006.72
ISI #: 000248621700076
Category: C1
Type: Proceedings Paper
Validations: ecoom 2008
Appears in Collections:Research publications

Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.