Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/7876
Full metadata record
DC FieldValueLanguage
dc.contributor.authorALVARES, Luis Otavio-
dc.contributor.authorBOGORNY, Vania-
dc.contributor.authorFERNANDES de MACEDO, J.A.-
dc.contributor.authorMOELANS, Bart-
dc.contributor.authorSPACCAPIETRA, Stefano-
dc.date.accessioned2008-02-19T13:23:58Z-
dc.date.available2008-02-19T13:23:58Z-
dc.date.issued2007-
dc.identifier.citationGrundy, John & Hartmann, Sven & Laender, Alberto H. F & Maciaszek, Leszek & Roddick, John F. (Ed.) In Proc. Tutorials, posters, panels and industrial contributions at the 26th International Conference on Conceptual Modeling - ER 2007: vol. 83. p. 149-154.-
dc.identifier.urihttp://hdl.handle.net/1942/7876-
dc.description.abstractThe constant increase of moving object data imposes the need for modeling, processing, and mining trajectories, in order to find and understand the patterns behind these data. Existing works have mainly focused on the geometric properties of trajectories, while the semantics and the background geographic information has rarely been addressed. We claim that meaningful patterns can only be extracted from trajectories if the geographic space where trajectories are located is considered. In this paper we propose a reverse engineering framework for mining and modeling semantic trajectory patterns. Since trajectory patterns are data dependent, they may not be modeled in conceptual geographic database schemas before they are known. Therefore, we apply data mining to extract general trajectory patterns, and through a new kind of relationships, we model these patterns in the geographic database schema. A case study shows the power of the framework for modeling semantic trajectory patterns in the geographic space.-
dc.language.isoen-
dc.publisherACS-
dc.relation.ispartofseriesCRPIT-
dc.titleDynamic Modeling of Trajectory Patterns using Data Mining and Reverse Engineering-
dc.typeProceedings Paper-
dc.bibliographicCitation.bvolume83-
local.bibliographicCitation.authorsGrundy, John-
local.bibliographicCitation.authorsHartmann, Sven-
local.bibliographicCitation.authorsLaender, Alberto H. F-
local.bibliographicCitation.authorsMaciaszek, Leszek-
local.bibliographicCitation.authorsRoddick, John F.-
local.bibliographicCitation.conferencedate2007-
local.bibliographicCitation.conferencenameConference on Conceptual Modeling - ER 2007-
local.bibliographicCitation.conferenceplaceAuckland, New Zealand-
dc.identifier.epage154-
dc.identifier.spage149-
local.bibliographicCitation.jcatC2-
local.type.specifiedProceedings Paper-
dc.bibliographicCitation.oldjcatC2-
dc.identifier.urlhttp://www.crpit.com/abstracts/CRPITV83Alvares.html-
local.bibliographicCitation.btitleIn Proc. Tutorials, posters, panels and industrial contributions at the 26th International Conference on Conceptual Modeling - ER 2007-
item.contributorMOELANS, Bart-
item.contributorFERNANDES de MACEDO, J.A.-
item.contributorSPACCAPIETRA, Stefano-
item.contributorBOGORNY, Vania-
item.contributorALVARES, Luis Otavio-
item.fulltextWith Fulltext-
item.fullcitationALVARES, Luis Otavio; BOGORNY, Vania; FERNANDES de MACEDO, J.A.; MOELANS, Bart & SPACCAPIETRA, Stefano (2007) Dynamic Modeling of Trajectory Patterns using Data Mining and Reverse Engineering. In: Grundy, John & Hartmann, Sven & Laender, Alberto H. F & Maciaszek, Leszek & Roddick, John F. (Ed.) In Proc. Tutorials, posters, panels and industrial contributions at the 26th International Conference on Conceptual Modeling - ER 2007: vol. 83. p. 149-154..-
item.accessRightsOpen Access-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
CRPITV83Alvares-1.pdfPublished version347.09 kBAdobe PDFView/Open
Show simple item record

Page view(s)

18
checked on Jun 28, 2022

Download(s)

10
checked on Jun 28, 2022

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.