Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/8007
Title: Classification of abelian hereditary directed categories satisfying Serre duality
Authors: VAN ROOSMALEN, Adam-Christiaan 
Issue Date: 2008
Publisher: AMER MATHEMATICAL SOC
Source: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 360(5). p. 2467-2503
Abstract: In an ongoing project to classify all hereditary abelian categories, we provide a classification of Ext-finite directed hereditary abelian categories satisfying Serre duality up to derived equivalence. In order to prove the classification, we will study the shapes of Auslander-Reiten components extensively and use appropriate generalizations of tilting objects and coordinates, namely partial tilting sets and probing of objects by quasi-simples.
Notes: Hasselt Univ, Res Grp Algebra, B-3590 Diepenbeek, Belgium.Van Roosmalen, AC, Hasselt Univ, Res Grp Algebra, Gebouw D, B-3590 Diepenbeek, Belgium.AdamChristiaan.vanRoosmalen@UHasselt.be
Document URI: http://hdl.handle.net/1942/8007
ISSN: 0002-9947
e-ISSN: 1088-6850
DOI: 10.1090/S0002-9947-07-04308-5
ISI #: 000252879200010
Category: A1
Type: Journal Contribution
Validations: ecoom 2009
Appears in Collections:Research publications

Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.